controls Accelnet Plus Micro Module CANopen APV

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

Control Modes

- Profile Position-Velocity-Torque, Interpolated Position (PT,PVT), Homing
- Indexer, Point-to-Point, CPL
- Camming, Gearing
- Position, Velocity, Torque

Command Interface

- CANopen
- ASCII, Serial Binary, and discrete I/O
- Stepper or Quad A/B position commands
- PWM Velocity/Torque command
- Master encoder (Gearing/Camming)

Communications

- CANopen
- RS-232

Feedback

Dual Absolute Encoder Ports

SSI

- EnDat 2.1, 2.2 Absolute A

Tamagawa Absolute A

- Panasonic , Sanyo Denki Absolute A Format BiSS
- Incremental
- Digital quad A/B/X encoder Analog Sin/Cos encoder
- Other
 - Digital Halls

I/O

- 7 High-speed digital inputs
- 6 High-speed digital outputs
- 1 Differential analog input

Safe Torque Off (STO)

• SIL 3, Category 3, PL e

Dimensions: in [mm]

- 2.5 x 1.6 x .69 [64 x 41 x 17.6] APV
- 4.4 x 2.1 x 1.85 [112 x 53.3 x 47] APZ-090-50
- 5.08 x 3.6 x 2.18 [129 x 91.4 x 55.2] APZ-090-50-C

DESCRIPTION

APV sets new levels of performance, connectivity, and flexibility. CANopen communication provides a widely used cost-effective industrial bus. A wide range of absolute encoders are supported.

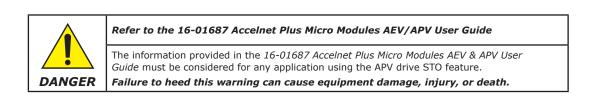
Safe Torque Off (STO) eliminates external contactors and wiring, reducing system cost and complexity. For safety critical applications, redundant STO disable inputs can be employed.

Model	Ic	IP	Vdc
APV-090-14	7	14	9~90
APV-090-30	15	30	9~90
APV-090-50	25	50	9~90
APV-090-50-C	50	50	9~90
APV-180-10	5	10	20~180
APV-180-20	10	20	20~180

Model	Ic	Ip	Vdc
APZ-090-50	25	50	9~90

APZ -50-C

Model	Ic	Iр	Vdc
APZ-090-50-C	50	50	9~90


copley Accelnet Plus Micro Module CANopen APV

GENERAL SPECIFICATIONS

Test conditions: Load = Wy								ADV 190 20	
	VE A-030-14	APV-090-30	APV-090-50	APV-090-50-0	APZ-090-50	APZ-090-50-C	APV-180-10	APV-100-20	
OUTPUT POWER	14 (0.0)	20 (21 2)	* 50 (25 4)	* 50 (25 4)			10 (7 1)	20(14.2)	
Peak Current Peak time	14 (9.9) 1	30 (21.2)	*50 (35.4) 1	*50 (35.4)	50 (35.4) 1	50 (35.4)	10 (7.1)	20 (14.2)	Adc (Arms)
Continuous current	7 (5.0)	1 15 (10.6)	*25 (17.7)	n/a *50 (35.4)	1 25 (17.7)	n/a 50 (35.4)	1 5 (3.5)	1 10 (7.1)	Sec Adc (Arms)
Peak Output Power	1.26	2.7	4.5	4.5	4.5	4.5	1.8	3.6	kW
Continuous Output Power		1.35	2.25	4.5	2.25	4.5	0.9	1.8	kW
						ig board for the		1.0	
NPUT POWER									
HVmin to HVmax	+9~90	+9~90	+9~90	+9~90	+9~90	+9~90	+20~180	+20~180	Vdc
Ipeak	14	30	50	50	50	50	10	20	Adc
Icont	7	15	25	50	25	50	5	10	Adc
VLOGIC	+9~60	+9~60	+9~60	+9~60	+9~60	+9~60	+9~60	+9~60	Vdc
VLOGIC Power		VLOGI	2 @ 9 Vdc 3.4	+ W, @ 24 Vdc	3.5 W, @ 60 V	dc 4.2 W with 2	2 encoders @	+5 V, 500 m/	A total
WM OUTPUTS Type	м	OSFET 3-phas	e inverter 16	kHz center-w	pighted PWM c	arrier, space-ve	octor modulati	าท	
PWM ripple frequency	11		e inverter, 10		kHz	anner, space-ve		511	
BANDWIDTH									
Current loop, small sig	gnal	2.5 kH	lz typical, bar	ndwidth will va	ry with tuning	& load inductar	nce		
HV Compensation				ot affect band					
Current loop update ra			z (62.5 µs)						
Position & Velocity loo	p update rai	te 4 kHz	(250 µs)						
COMMAND INPUTS									
CANopen:									
		Profile	Position/Velo	city/Torque, In	terpolated Posi	ition (PVT), Hor	ning		
Stand-alone mode				(00)1	<u> </u>				
Digital position refer	rence		Direction, CW	/CCW		commands (4			
Digital torgue & velo	city referen		A/B Encoder Polarity			/sec, 8 Mcount, 0% - 100%, Po		aurature)	
Digital torque & ver	July relefen	PWM 5				50% ±50%, ro		Iroquirod	
				no 1 kHz mi	nimum, 100 k⊦		polarity signa	arrequired	
			ninimum puls	•	220 ns				
Indexing						or ASCII comn	nands		
Camming					in flash memo		lando		
ASCII				400 Baud, 3-w		. ,			
DIGITAL INPUTS									
Number		7							
All inputs		High-s	peed Schmitt	trigger with 1	00 ns RC filter,	10 k Ω pull-up	to +5 Vdc, m	ax input volta	age = +6 Vdc
		RC tin	ne-constants	assume active	drive on inputs	s and do not inc	clude 10 kΩ pi	ull-ups	-
IN1~IN6		$V_T + =$	1.42~2.38 V	dc, $V_{T} = 0.68$	~1.6 Vdc, V _H =	0.44~1.26			
IN7		$V_{T} + =$	1.30~2.00 V	dc, $V_{T} = 0.55$	~1.30 Vdc, V _н	= 0.40~0.79			
ANALOG INPUT									
Number		1							
Туре						filter bandwid		e 16 kHz	
Function		Torque	, velocity, or I	position comm	and. Or, as ger	eral purpose a	nalog input		
DIGITAL OUTPUTS									
Number		6							
OUT1~3					grammable, +				
			-	,	ink 6 mA @ V0				
OUT4~6					, ,	r SLI port, +3.3 VOL = 0.55 Vc			
		50uite	24 IIIA @ VI	JII – 2.3 VUC,		VOL - 0.33 VC			
RS-232 COMMUNICATI Signals	UNFURI	RxD T	xD, SGND						
Mode				ial communica	tion port for dr	ive setup and o	control, 9.600	to 230.400 F	Baud
Protocol			or Binary forn						
Isolation				nced to Signal	Ground				
CANOPEN PORT									
Format		Galvan	ically isolated	from drive cir	cuits: CAN_H,	CAN_L, CAN_G	ND, 1 mBit/se	c maximum	
TUTHAL									

GENERAL SPECIFICATIONS

DC POWER OUTPUT +5 Vdc	500 mA maximum. Protecte	d for overload or shorts. Shared by d	ual encoders.			
SAFE TORQUE OFF (STO)		,				
Function	PWM outputs are inactive ar	nd current to the motor will not be pos	ssible when the STO function is asserted			
Standard		EC-61508-2, IEC-61800-5-2, ISO-138	49-1			
Safety Integrity Level		SIL 3, Category 3, Performance level e 2 two-terminal: STO-IN1+,STO-IN1-, STO-IN2+, STO-IN2-				
Inputs Type		510-101-, $510-102+$, $510-102-ole, Vin-LO \leq 2.0 Vdc or open, Vin-HI$	> 2 2 V/dc			
Input current (typical)	STO-IN1, STO-IN2: 11 mA e		2 3.3 Vuc			
Response time	2 ms from Vin ≤2.0 Vdc to i	nterruption of energy supplied to mot	or			
Muting	Wiring a shorting plug with	jumpers (see page 7) will mute (bypa	ss) the STO function			
PROTECTIONS						
HV Overvoltage	$+HV > +95 \pm 1 Vdc$	Drive outputs turn off until +HV is -	< +95 ±1 Vdc (90 V models)			
	$+HV > +185 \pm 1 Vdc$	Drive outputs turn off until +HV is -				
HV Undervoltage	+HV < +8.5 ±0.5 Vdc	Drive outputs turn off until $+HV >$	· · · · · · · · · · · · · · · · · · ·			
	$+HV < +19.5 \pm 0.5 Vdc$		+19.5 Vdc ±0.5 Vdc (180 V models)			
Drive over temperature	PC Board > 90 °C +3/-0 °C		orary fault			
Short circuits	1 1 7 1	ground, internal PWM bridge faults	it is a set of the set			
I ² T Current limiting	Programmable: continuous of Programmable response to e	current, peak current, peak time for d	rive and motor			
Latching / Non-Latching						
MECHANICAL & ENVIRONMENT		4 x 41 x 17 6 mm]				
Size	APV: 2.5 x 1.6 x 0.69 in [64	85 in [112 x 53.3 x 47 mm]				
		x 2.18 in [129 x 91.4 x 55.2 mm]				
Weight		add 0.106 lb (0.048 kg) for pins heat	sink			
-	APZ-090-50: 0.40 lb (0.18					
	APZ-090-50-C: 0.72 lb (0.3					
Ambient temperature	0 to +45 °C operating, -40	to +85 °C storage				
Humidity Altitude	0 to 95%, non-condensing \leq 2000 m (6,500 ft)					
Vibration	2 g peak, 10~500 Hz (sine)					
Shock	10 q, 10 ms, half-sine pulse					
Contaminants	Pollution degree 2					
Cooling	Forced air cooling required	for continuous power output				
AGENCY STANDARDS CONFORM	1ANCE					
Standards and Directives						
Functional Safety						
	8-2, IEC 61508-3, IEC 61508-4 ((SIL 3)				
Directive 2006/42/EC (
ISO 13849-1 (Cat	, ,	FUNCTIONAL				
IEC 61800-5-2 (S	oll3)	SAFETY	ISO 13849-1			
Product Safety			Up to PL e (Cat 3)			
Directive 2014/35/EU (Low Voltage)		IEC 61800-5-2			
IEC 61800-5-1			Up to SIL 3			
EMC						
Directive 2014/30/EU (I	EMC)					
IEC 61800-3						
IEC 61800-5-2						
Approvals	opent to:					
UL and cUL recognized comp	0-5-2 (E168959-20200424A)					
IEC 61800-5-1, IEC 618						
	JOO J Z					

GENERAL SPECIFICATIONS

MOTOR CONNECTIONS Motor U,V,W Drive outputs to 3-phase brushless motor, Wye or delta connected For DC brush motor use outputs U & V Minimum inductance: 200 µH line-line Encoder Digital encoders, incremental and absolute (see FEEDBACK below) Analog Sin/Cos incremental Halls see Commutation (below) Motemp Inputs are programmable to disable the drive if motor sensor drives input HI or LO FEEDBACK Incremental encoders Digital Incremental Encoder Quadrature signals, (A, /A, B, /B, X, /X), differential (X, /X Index signals not required) RS-422 line receivers, 5 MHz maximum line frequency (20 M counts/sec) Analog Incremental Encoder Sin/Cos format (Sin+, Sin-, Cos+, Cos-), differential, 1 Vpeak-peak ±20% BW > 300 kHz, 16-bit resolution, with zero-crossing detection Absolute encoders EnDat 2.1, 2.2, SSI Serial Clock (X, /X), and Data (A, /A) signals Absolute A Format SD+, SD- (A, /A) signals, 2.5 or 4 MHz, half-duplex Position feedback: 13-bit resolution per rev, 16 bit revolution counter (29 bit absolute position data) Status data for encoder operating conditions and errors MA+, MA- (X, /X), SL+, SL- (A, /A) signals, clock output from drive, data returned from encoder BiSS (B&C) Terminators All encoder data inputs and clock outputs are differential and require external terminators Commutation Hall signals (U,V,W), 15 k Ω pull-up to +5V, 15 k Ω /100 pF RC to 74LVC3G14 Schmitt trigger at +5 Vcc Encoder power +5 Vdc ±2% @ 500 mAdc max, shared by dual encoders HALLS Digital U, V, W: Single-ended, 120° electrical phase difference between U-V-W signals, Schmitt trigger, 1.5 μ s RC filter from active HI/LO sources, 24 Vdc compatible, 15 k Ω pull-up to +5 Vdc Vt+ = 2.5~3.5 Vdc, VT- = 1.3~2.2 Vdc, VH = 0.7~1.5 Vdc Analoa U & V: Sin/Cos format (Sin+, Sin-, Cos+, Cos-), differential, 1 Vpeak-peak ±20% BW > 300 kHz, 121 Ω terminating resistors between Sin+ & Sin-, Cos+ & Cos- inputs 16-bit resolution, BW > 300 kHz, with zero-crossing detection MULTI-MODE ENCODER PORT As Input See Digital Incremental Encoder above for electrical data on A, B, & X channels, or Absolute encoders using X or A channels. External terminators required as shown above As Emulated Output Quadrature A/B encoder emulation with programmable resolution to 4096 lines (65,536 counts) per rev from analog Sin/Cos encoders or resolvers A, /A, B, /B, outputs from MAX3032 differential line driver, X, /X, A, /A from MAX 3362 line drivers As Buffered Output Digital A/B/X encoder signals from primary digital encoder are buffered as shown above 5 MHz max, 20 mega count/sec 5V OUTPUT Number 1 Ratings +5 Vdc @ 500 mA thermal and overload protected

NOTE:

Inputs and outputs may have more than one function. Data tables now have a Signals column that has the signal names used in the Reference Kits. Other columns show the signal names that have been used in the datasheets.

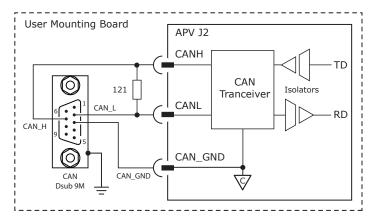
16-01682 Document Revision History

Revision	Date	Remarks
00~04	n/a	Developmental revisions
05	May 1, 2020	All models are CE certified, "All of the agency standards are pending at this time" note was removed. A page with information on panel-mounting has been added.
06	August 31, 2020	Correction of part numbers on pp. 18~19, clarified APZ-090-50-C heatsink feature
07	September 25, 2020	Correction of VLOGIC pins on pp. 16~17, added EZ board signals to data tables
08	October 21, 2020	Data tables now have "Signals" columns that contain the labels shown in the Reference Design schematics. Other columns show the labels that have been used in the datasheets and manuals.
09	November 11, 2020	Add UL file number to Approvals in Agency Standards Conformance.

CANOPEN COMMUNICATIONS

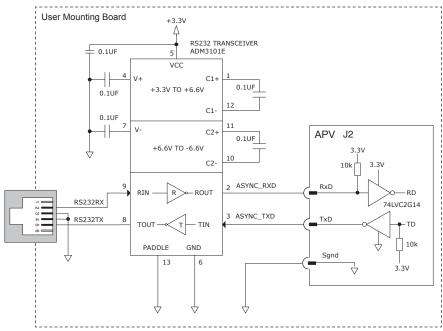
CANOPEN

Based on the CAN V2.0b physical layer, a robust, two-wire communication bus originally designed for automotive use where low-cost and noise-immunity are essential, CANopen adds support for motion-control devices and command synchronization. The result is a highly effective combination of data-rate and low cost for multi-axis motion control systems. Device synchronization enables multiple axes to coordinate moves as if they were driven from a single control card.


CANOPEN COMMUNICATION

APV uses the CAN physical layer signals CANH, CANL, and CAN_GND for connection, and CANopen protocol for communication. Before installing the drive in a CAN system, it must be assigned a CAN Node-ID (address). A maximum of 127 CAN nodes are allowed on a single CAN bus. Up to seven digital inputs can be used to produce CAN Node-IDs from 1~127, or the Node-ID can be saved to flash memory in the module. Node-ID 0 is reserved for the CANopen master on the network.

CANOPEN COMMAND INPUTS


The graphic shows connections between the APV and a Dsub 9M connector on a CAN card. If the APV is the last node on a CAN bus, the internal terminator resistor can be used by adding a connection on the PC board as shown. If there are multiple APV on the mounting PCB then the terminating resistor should be near the APV that is farthest from the CAN network connection to the PCB. The node Node-ID of the APV may be set by using digital inputs, or programmed into flash memory in the drive.

Signal	J2 Pins
CANH	29
CANL	27
CAN_GND	25,26

APV RS-232 COMMUNICATIONS

RS-232 PORT

The serial port is a full-duplex, three-wire (RxD, TxD, SGND) type that operates from 9,600 to 230,400 Baud.

It can be used by CME for drive configuration and setup or by external equipment sending ASCII commands.

The circuit shown here is used on the EZ board and is recommended for user's PC boards. It converts the single-ended TTL signals levels in the APV into the ANSI RS-232 levels which are the standard for serial communications and computer COMM ports.

RS-232	Signal	J2 Pins
RxD	ASYNC_RXD	28
TxD	ASYNC_TXD	30
SGND	SGND	32

SAFE TORQUE OFF (STO)

The Safe Torque Off (STO) function is defined in IEC 61800-5-2. Two channels are provided which, when de-energized, prevent the upper and lower devices in the PWM outputs from producing torque in the motor.

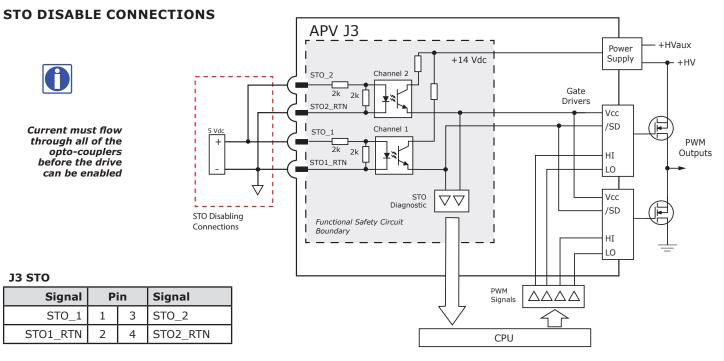
This provides a positive OFF capability that cannot be overridden by the control firmware, or associated hardware components. When the opto-couplers are energized (current is flowing in the input diodes), the control core will be able to control the on/off state of the PWM outputs to produce torque in the motor.

INSTALLATION

Refer to the 16-01687 Accelnet Plus Micro Modules AEV/APV User Guide

The information provided in the 16-01687 Accelnet Plus Micro Modules AEV & APV User Guide must be considered for any application using the APV drive STO feature.

FAILURE TO HEED THIS WARNING CAN CAUSE EQUIPMENT DAMAGE, INJURY, OR DEATH.


STO DISABLE

In order for the PWM outputs of the APV to be activated, current must be flowing through the opto-couplers that are connected to the STO-IN1 and STO-IN2 terminals and the drive must be in an ENABLED state. When either of the opto-couplers are OFF, the drive is in a Safe Torque Off (STO) state and the PWM outputs cannot be activated by the control core to drive a motor.

This diagram shows connections that will energize all of the optocouplers from a +5V source. When this is done the STO feature is disabled and control of the output PWM stage is under control of the digital control core.

If not using the STO feature, these connections must be made in order for the drive to be enabled.

FUNCTIONAL DIAGRAM

STO OPERATION

STO Input Voltage	STO State
STO_1 AND STO_2 \geq 3.3 Vdc	STO Inactive. Drive can be enabled to produce torque
STO_1 OR STO_2 \leq 2.0 Vdc	CTO Active Drive connet be enabled to produce torque
STO_1 OR STO_2 Open	STO Active. Drive cannot be enabled to produce torque

Note: Voltages in the table above are referenced between an STO-INx+ and an STO-INx-. E.g. V(STO-IN1) = V(STO-IN1+) - V(STO-IN1-)

STO STATUS

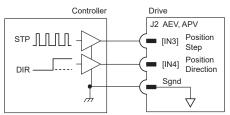
A digital output can be programmed to be active when the drive is disabled by the STO function. The active level of the output is programmable to be HI or LO. *Note: STO Status is not part of the STO Safety Function.*

DIGITAL COMMAND INPUTS: POSITION

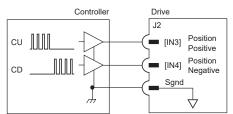
STAND-ALONE MODE DIGITAL POSITION-CONTROL INPUTS

APV works with motion controllers that output pulses to command position.

These formats are supported:


Step/Direction

Count-Up/Count-Down (CU/CD)


A/B Quadrature Encoder

In Step/Direction mode, a pulse-train controls motor position, and the direction is controlled by a DC level at the Direction input. CU/CD (Count-Up/Count-Down) signals command the motor to move CW or CCW depending on which input the pulse-train is directed to. The motor can also be operated in an electronic gearing mode by connecting the inputs to a quadrature encoder on another motor. In all cases the ratio between input pulses and motor revolutions is programmable.

STEP/DIRECTION INPUTS

COUNT-UP/COUNT-DOWN INPUTS

	Ţ,	

Command Options	Signal	J2 Pins
Step, Position Positive, Encoder A	IN3	7
Direction, Positioni Negative, Encoder B	IN4	8

SGND
3,4,18,19,20,21,22,23,24,
31 32 33 34 42 49 50 59 60

QUAD A/B ENCODER INPUTS

Drive

[IN3] Encoder A

Sand

[IN4] Encoder B

 \Diamond

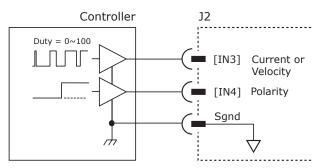
J2

Controller

DIGITAL COMMAND INPUTS: VELOCITY, TORQUE

STAND-ALONE MODE DIGITAL VELOCITY/TORQUE CONTROL INPUTS

APV works with motion controllers that output pulses to command velocity and torque (current).


These formats are supported:

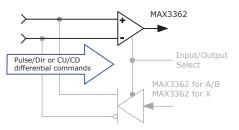
PWM/Direction

50 % PWM

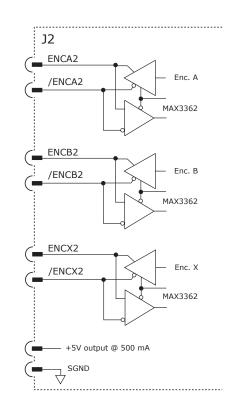
In PWM/Direction mode, a pulse-train with variable duty-cycle controls motor Vel/Trq, and the polarity or direction is controlled by HI/LO levels at the Direction input. With 50% PWM operation there is a single signal. A 50% duty cyle produces zero output. Increasing the duty cycle to 100% produces a full-scale output in one direction and 0% duty cycle produces a full-scale output in the opposite direction.

PWM & DIRECTION

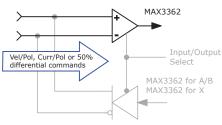
50%	PW/I	М


Command Options	Signal	J2 Pins
PWM/Dir Current or Velocity	IN3	7
PWM/Dir Polarity	IN4	8

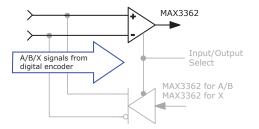
MULTI-MODE PORT AS AN INPUT


COMMAND INPUT

POSITION COMMANDS: DIFFERENTIAL


- Pulse & Direction
- CW & CCW (Clockwise & Counter-Clockwise)
- Encoder Quad A & B
- Camming Encoder A & B input

J2 Pins Command Options Pulse, CW, Quad Encoder A, Vel-Curr-Magnitude, Vel-Curr-50% 51 /Pulse, /CW, Quad Encoder /A, /Vel-Curr-Magnitude, /Vel-Curr-50% 52 Direction, CCW, Quad Encoder B, Vel-Curr-Direction 53 /Direction, /CCW, Quad Encoder /B, /Vel-Curr-Direction 54


- Current/Velocity Magnitude & Direction
- Current/Velocity 50%

FEEDBACK INPUT: ENCODER 2

SECONDARY FEEDBACK: INCREMENTAL

Quad A/B/X incremental encoder

SECONDARY FEEDBACK: ABSOLUTE

- Half-Duplex: Absolute A encoders (2-wire) The A channel first transmits a Clock signal and then switches to a receiver to receive data from the encoder.
- Full-Duplex: SSI, BiSS, EnDat encoders (4-wire) The X channel sends the Clock signal to the encoder, which initiates data transmission to the A-channel.

A A A A A A A A A A A A A A A A A A A	A 4-Wire digital absolute encoder signals X A MAX3362 Input Select Output Select
	✓ ✓ MAX3362

J2 SGND Pins

3,4,18,19,20,21,22,23,24, 31,32,33,34,42,49,50,59,60

Quad Encoder A, Half-Duplex CLK-DATA, Full-Duplex DATA

Quad Encoder /A, Half-Duplex /CLK-DATA, Full-Duplex /DATA

J2 Pins

51

52

53

54

55

56

J2	SIGNALS	

J2 SIGNALS	
Pin	
51	
52	
53	
54	
55	
56	

Feedback Options

Quad Encoder B

Quad Encoder /B

Quad Encoder X, Full-Duplex CLOCK

Quad Encoder /X, Full-Duplex /CLOCK

controls Accelnet Plus Micro Module CANopen APV

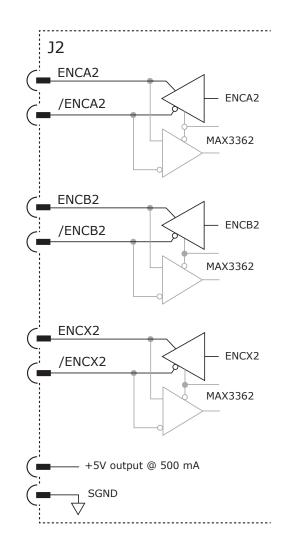
MULTI-MODE PORT AS AN OUTPUT

OUTPUT TYPES

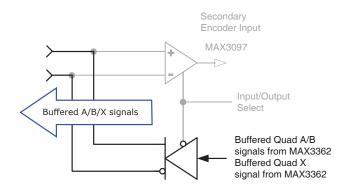
BUFFERED FEEDBACK OUTPUTS: DIFFERENTIAL

An incremental encoder connected as primary feedback from the motor is internally connected to the multi-port configured as an output. This can then be wired to a motion controller that needs position data without the need for split-wiring cables from the encoder alone.

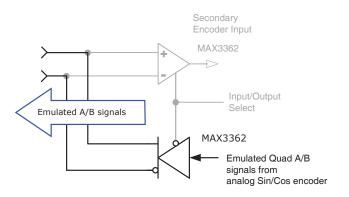
- Encoder Quad A, B, X channels
- Direct internal connection between quad A/B/X encoder feedback and differential line drivers for A/B/X outputs


EMULATED FEEDBACK OUTPUTS: DIFFERENTIAL

Firmware produces emulated quad A/B signals from feedback data from the following devices:


- Absolute encoders
- Analog Sin/Cos incremental encoders The X channel is not used in this mode

J2 SIGNALS			
Buffered A/B/X	Emulated A/B	Signal	Pin
Buffered A	Quad A	ENCA2	51
Buffered /A	Quad /A	/ENCA2	52
Buffered B	Quad B	ENCB2	53
Buffered /B	Quad /B	/ENCB2	54
Buffered X		ENCX2	55
Buffered /X		/ENCX2	56


	J2 SGND Pins
3,4,18	3,19,20,21,22,23,24,
31,32,3	33,34,42,49,50,59,60

BUFFERED QUAD A/B/X OUTPUTS

EMULATED QUAD A/B OUTPUTS

CME DEFAULTS

These tables show the CME default settings. They are user-programmable and the settings can be saved to non-volatile flash memory.

Input / Output > Digital Inputs

Name	Configuration
IN1	Amp Enable-LO Enables with Clear Faults
IN2	Not Configured
IN3	Not Configured
IN4	Not Configured
IN5	Motor Temp-Hi Disables
IN6	Encoder Fault-Active HI
IN7*	SLI MISO (Master Input Slave Output)

*If not used for an SLI port, this input can be programmed for other functions.

Configure Filters > Filter Settings

Name	Notes
Analog Reference	Disabled
V Loop Input	Disabled
V Loop Output 1	Low Pass, Butterworth, 2 poles, 200 Hz
V Loop Output 2	Disabled
V Loop Output 3	Disabled
I Loop Input 1	Disabled
I Loop Input 2	Disabled
Input Shaping	Disabled, 0.1 Poles

Home

Software Limits	Positive, Negative, Deceleration
Method	Set Current Position as Home
Fast Velocity	RPM
Slow Velocity	RPM
Accel / Decel	RPS
Offset	Counts
Homing Adjustment	Counts

Input / Output > Digital Outputs

Name	Notes
OUT1	Fault-Active LO
OUT2	Not Configured
OUT3	Brake-Active Low
OUT4*	SLI MOSI (Master Output Slave Input)
OUT5*	SLI CLK (Clock)
OUT6*	SLI SS (Slave Select)
	Name OUT1 OUT2 OUT3 OUT4* OUT5*

*If not used for an SLI port, these outputs can be programmed for other functions.

Configure Faults > Latched Faults

Active	Notes
\checkmark	Short Circuit
\checkmark	Amp Over Temperature
\checkmark	Motor Over Temp
Over Voltage	
Under Voltage	
\checkmark	Feedback Error
Motor Phasing Error	
√ Following Error	
Command Input Fault	
Motor Wiring Disconnected	
	STO Active

Configure Faults > Optional Faults

Over Current (Latched)

 \checkmark These are the default settings for Latched Faults. Using CME, these can be checked or unchecked.

copley Accelnet Plus Micro Module CANopen APV

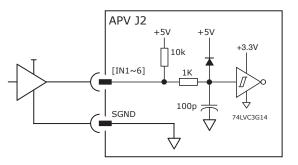
HIGH SPEED INPUTS: IN1, IN2, IN3, IN4, IN5, IN6

The six digital inputs to the APV are programmable to a selection of functions. All have 100 ns RC filters when driven by active sources (CMOS, TTL, etc) and all have 10 k Ω pull-up resistors to +5 Vdc. In addition to the selection of functions, the active level for each input is individually programmable. Input *level* functions have programmable HI or LO to activate the function. Input *transition* functions are programmable to activate on LO -> HI, or HI -> LO transitions.

INPUT LEVEL FUNCTIONS

- Drive Enable, Enable with Clear Faults, Enable with Reset
- PWM Sync
- Positive Limit Switch
- Negative Limit Switch
- Home Switch
- Encoder Fault
- Motor Temperature Sensor Input
- Motion Abort
- High-Resolution Analog Divide

INPUT TRANSITION FUNCTIONS


- Clear Faults and Event Latch
- Drive Reset
- PWM Sync Input
- Trajectory Update
- Count Input Edges, Save to Register
- High-Speed Position Capture
- Simulated Absolute Encoder Burst
- Abort Move if > N Counts From Destination in Register

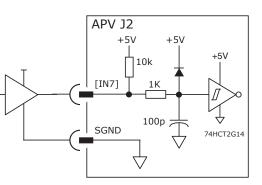
SPECIFICATIONS

Input	Data	Notes
	HI	V_{T} + = 1.42~2.38 Vdc
	LO	V_{T} + = 0.68~1.6 Vdc
Input Voltages	Hys	$V_{H} = 0.44 \sim 1.26$
	Max	+6 Vdc
	Min	0 Vdc
Pull-up	R1	10 kΩ
	R2	1 kΩ
Low pass filter	C1	100 pF
	RC ¹	0.1 µs

CONNECTIONS

22			
Signal	J2 Pins		
IN1	5		
IN2	6		
IN3	7		
IN4	8		
IN5	9		
IN6	10		

J2 SGND Pins
3,4,18,19,20,21,22,23,24,
31,32,33,34,42,49,50,59,60


HIGH SPEED INPUT: IN7

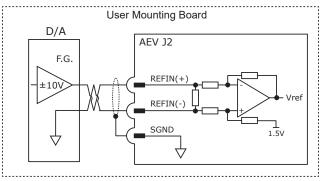
- Digital, non-isolated
- Programmable functions
- MISO Input when SLI port is in use.

SPECIFICATIONS

Input	Data	Notes
	HI	VT+ ≥ 1.3~2.0 Vdc
	LO	VT- ≤ 0.55~1.3 Vdc
Input Voltages	Hys	VH 0.40~0.79 Vdc
	Max	+6 Vdc
	Min	0 Vdc
Pull-up	R1	10 kΩ
	R2	1 kΩ
Low pass filter	C1	100 nF
	RC ¹	0.1 µs

CONNECTIONS
Signal J2 Pins
IN7 11

* RC time constant applies when input is driven by active high/low device

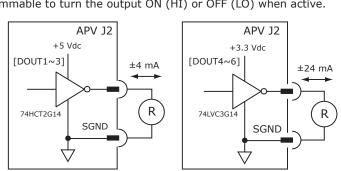

ANALOG INPUT: AIN1

As a reference input it takes Position/Velocity/Torque commands from a controller. If not used as a command input, it can be used as general-purpose analog input.

SPECIFICATIONS

Spec	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5.09 kΩ

Signal	J2 Pins
AIN(+)	2
AIN(-)	1

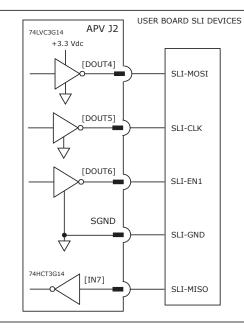


DIGITAL OUTPUTS: OUT1~OUT4

Digital outputs [OUT1~3] are HCT CMOS inverters. They operate from +5V and can source/sink 4 mAdc. [OUT4~6] are LVC CMOS inverters. They operate from 3.3V and can source/sink 24 mA. The output functions shown below are programmable to turn the output ON (HI) or OFF (LO) when active.

OUTPUT FUNCTIONS

- Fault
- Brake
- Custom event
- PWM Sync
- Custom Trajectory status
- Custom position-triggered output
- Program control

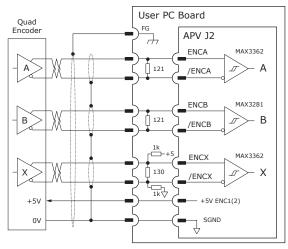

Signal	J2 Pins
DOUT1	13
DOUT2	12
DOUT3	15
DOUT4	14
DOUT5	17
DOUT6	16

SLI (Switch & LED Interface) PORT

These three outputs and one input operate as an SLI (Switch and LED Interface) port for controlling LEDs and reading the settings the network address switches. The graphic below shows them in SLI mode. If not used for SLI they are programmable for other functions to turn the output ON (HI) or OFF (LO) when active. [IN7] is shown here for completeness as part of the SLI function.

OUTPUT FUNCTIONS

- Fault
- Brake
- Custom event
- PWM Sync
- Custom Trajectory status
- Custom position-triggered output
- Program control



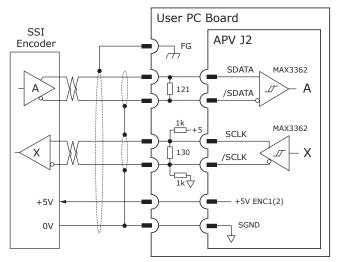
SLI PORT	Signal	J2 Pins
SLI-MOSI	DOUT4	14
SLI-CLK	DOUT5	17
SLI-EN1	DOUT6	16
SLI-GND	SGND	18
SLI-MISO	IN7	11

J2 SGND Pins
3,4,18,19,20,21,22,23,24,
31,32,33,34,42,49,50,59,60

ENCODER 1 (PRIMARY FEEDBACK)

QUAD ENCODER WITH INDEX

A/B/X SIGNALS


Signal	J2 Pins
ENCA1	43
/ENCA1	44
ENCB1	45
/ENCB1	46
ENCX1	47
/ENCX1	48
+5VENC	57,58

J2 SGND Pins
3,4,18,19,20,21,22,23,24,
31,32,33,34,42,49,50,59,60

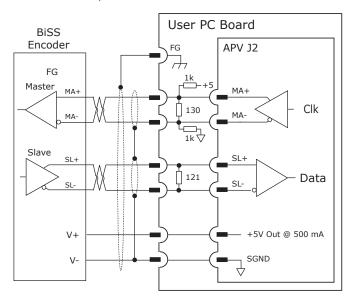
SSI ABSOLUTE ENCODER

The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or control system. The APV drive provides a train of clock signals in differential format to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The number of encoder data bits and counts per motor revolution are programmable.

The hardware bus consists of two signals: SCLK and SDATA. The SCLK signal is only active during transfers. Data is clocked in on the falling edge of the clock signal.

SSI, BISS SIGNALS

SSI	BiSS	Signal	J2 Pins
SCLK	MA+	ENCX1	47
/SCLK	MA-	/ENCX1	48
SDATA	SL+	ENCA1	43
/SDATA	SL-	/ENCA1	44
+!	5V	+5VENC	57,58


BISS ABSOLUTE ENCODER

BiSS is an Open Source digital interface for sensors and actuators. BiSS refers to principles of well known industrial standards for Serial Synchronous Interfaces like SSI, AS-Interface[®] and Interbus[®] with additional options.

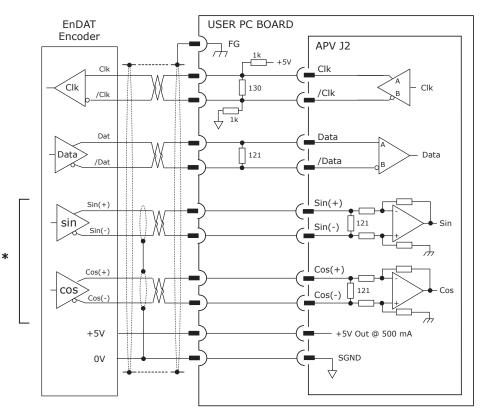
- Serial Synchronous Data Communication Cyclic at high speed
- 2 unidirectional lines Clock and Data Line delay compensation for high speed data transfer Request for data generation at slaves Safety capable: CRC, Errors, Warnings Bus capability incl. actuators

Bidirectional

BiSS B-protocol: Mode choice at each cycle start BiSS C-protocol: Continuous mode

Note: Single (outer) shields should be connected at the drive end. Inner shields are optional for digital encoders and should only be connected to Signal Ground on the drive.

ENCODER 1 (PRIMARY FEEDBACK)


ENDAT ABSOLUTE ENCODER

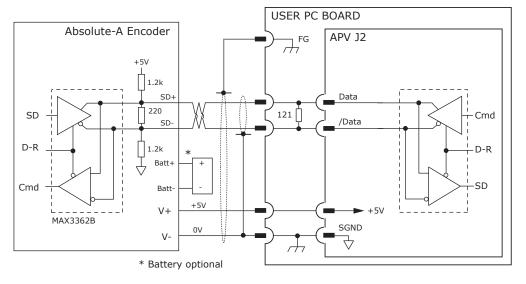
The EnDat interface is a Heidenhain interface that is similar to SSI in the use of clock and data signals, but which also supports analog Sin/Cos channels from the same encoder. The number of position data bits is programmable as is the use of Sin/Cos channels. Use of Sin/Cos incremental signals is optional in the EnDat specification.

ENDAT SIGNALS

EnDAT	Signal	J2 Pins
Clk	ENCX1	47
/Clk	/ENCX1	48
Data	ENCA1	43
/Data	/ENCA1	44
Sin(+) *	SIN1+	36
Sin(-) *	SIN1-	35
Cos(+) *	COS1+	38
Cos(-) *	COS1-	37
+5V	+5V	57,58

 * Sin/Cos optional with EnDat 2.2 or any 1 Mbit or faster Endat Sin/Cos required if EnDat 2.1 < 1 Mbit

J2 SGND Pins
3,4,18,19,20,21,22,23,24,
31,32,33,34,42,49,50,59,60


ABSOLUTE-A ENCODER

The Absolute A interface is a serial, half-duplex type that is electrically the same as RS-485. Note the battery which must be connected. Without it, the encoder will produce a fault condition.

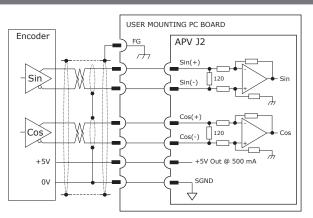
ABSOLUTE-A SIGNALS

ABS-A	Signal	J2 Pins
Data	ENCA1	43
/Data	/ENCA1	44
+5V	+5ENC	57,58

- Absolute A
- Tamagawa Absolute A
- Panasonic Absolute A Format
- Sanyo Denki Absolute A

Note: Signal (outer) shields should be connected at the drive end. The inner shield is optional for digital encoders and should only be connected to Signal Ground on the drive.

copley Accelnet Plus Micro Module CANopen APV

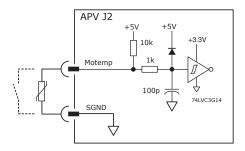

ANALOG ENCODER

SIN/COS ENCODERS

Sin/Cos sensors in linear brushless motors are produced from the magnetic field in the rod and provide commutation feedback as well as higher resolution position feedback by interpolating of the signals.

Incremental rotary encoders are also available with Sin/Cos outputs.

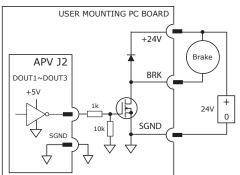
Programmable interpolation enables the number of counts per revolution or linear movement to be programmable.



Encoder	Signal	J2 Pins
Sin(+)	SIN1+	36
Sin(-)	SIN1-	35
Cos(+)	COS1+	38
Cos(-)	COS1-	37
+5V	+5VENC	57,58

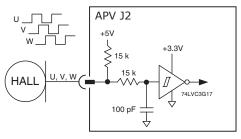
OTHER MOTOR CONNECTIONS

MOTOR TEMPERATURE SENSOR


Any digital input is programmable for use with a motor overtemperature switch. Either a HI or LO input level is programmable to signal an over-temp condition.

Input	Signal	J2 Pins
Motemp	IN5	9
SGND	SGND	3

MOTOR BRAKE


OUT1~OUT3 have +5V outputs that can control a MOSFET. When programmed for brake control with an active HI level, the output will turn on the MOSFET, releasing the brake and allowing the motor to move.

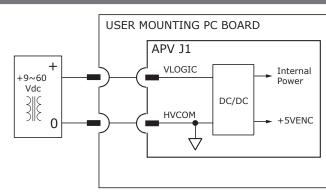
Brake	Signal	J2 Pins		
OUT1	DOUT1	13		
OUT2	DOUT2	12		
OUT3 * DOUT3 15				
* OUT3 is brake default				

HALLS

Hall sensors in a brushless motor are produced from the magnetic field in the motor and provide commutation feedback without an encoder. When used with incremental encoders, they enable the motor to operate without a phase-finding cycle.

Input	Signal	J2 Pins
Hall U	HALLU	39
Hall V	HALLV	40
Hall W	HALLW	41

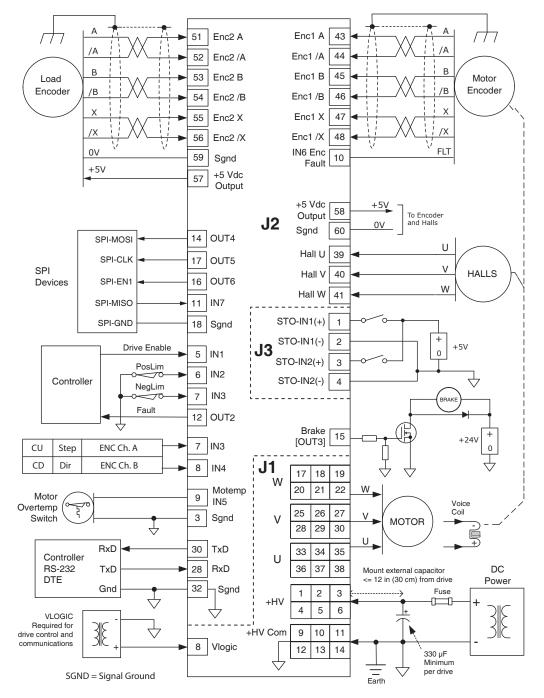
J2 SGND Pins				
3,4,18,19,20,21,22,23,24,				
31,32,33,34,42,49,50,59,60				


VLOGIC

DESCRIPTION

Powers the internal logic and control circuits in the drive.

When using the STO feature, it must be produced by power supplies with transformer isolation from the mains and PELV or SELV ratings and a maximum output voltage of 60 Vdc.


If the motor can operate from voltages of 60 Vdc or less, the +HV and VLOGIC can be driven from a single power supply.

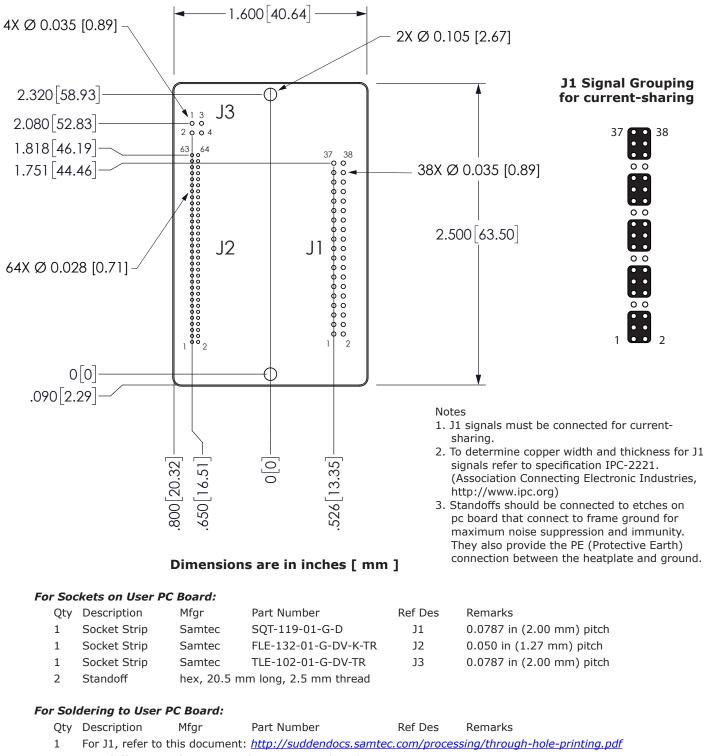
Signal	J1 Pins
VLOGIC	8
HVCOM	9,10,11, 12,13,14

TYPICAL CONNECTIONS

This graphic shows the functional connections between APV connectors and various devices. User mounting board connections are not shown.

Notes


- [IN1] is shown as Drive Enable and [IN2] and [IN7] are shown with some typical functions.
 [IN3] and [IN4] are shown as digital command inputs. [IN3] is shown twice.
 If SLI function is used, it will not be available for other functions. All inputs are programmable.
- [OUT2] is shown as a Fault signal to the controller and [OUT3] is shown as control for a motor brake. All outputs are programmable.
- 3. Encoder connections are shown for incremental types, but absolute encoders are supported on both primary and load encoder inputs.


Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01682 Rev 09

PC BOARD MOUNTING & DRILLING DIMENSIONS

copley (

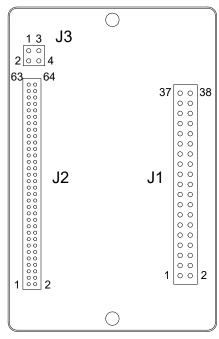
controls

2 Standoff hex, 15 mm long, 2.5 mm thread

controls Accelnet Plus Micro Module CANopen APV

PC BOARD SIGNALS

J3 SAFETY


SIGNAL	PIN	PIN	SIGNAL
STO_1	1	3	STO_2
STO1_RTN	2	4	STO2_RTN

J2 FEEDBACK

Signal	P3	Pin	Signal
*	63	64	*
*	61	62	*
SGND	59	60	SGND
+5VENC	57	58	+5VENC
ENCX2	55	56	/ENCX2
ENCB2	53	54	/ENCB2
ENCA2	51	52	/ENCA2
SGND	49	50	SGND
ENCX1	47	48	/ENCX1
ENCB1	45	46	/ENCB1
ENCA1	43	44	/ENCA1
HALLW	41	42	SGND
HALLU	39	40	HALLV
COS1-	37	38	COS1+
SIN1-	35	36	SIN1+
SGND	33	34	SGND
SGND	31	32	SGND
CANH	29	30	ASYNC_TXD
CANL	27	28	ASYNC_RXD
CANGND	25	26	CANGND
SGND	23	24	SGND
SGND	21	22	SGND
SGND	19	20	SGND
(SLI-CLK) DOUT5	17	18	SGND
(BRAKE) DOUT3	15	16	DOUT6 (SLI-EN1)
DOUT1	13	14	DOUT4 (SLI-MOSI)
(SLI-MISO) IN7	11	12	DOUT2
IN5	9	10	IN6
IN3	7	8	IN4
(Enable) IN1	5	6	IN2
SGND	3	4	SGND
REFIN(-)	1	2	REFIN(+)

TOP VIEW

Viewed from above looking down on the connectors or PC board footprint to which the module is mounted

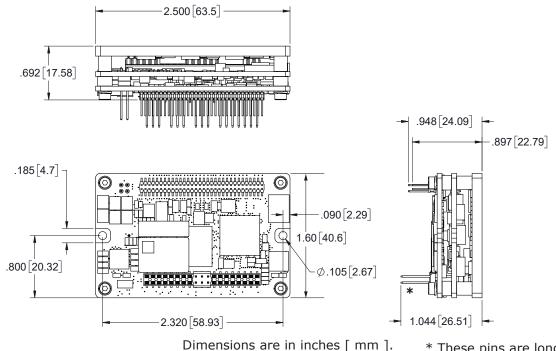
Connector part numbers for socket mounting.

J1: HV & Motor Dual row, 2 mm centers 38 position female header Samtec: SQT-119-01-G-D

- J2: Feedback Dual row, 0.050 inch centers 64 position female header Samtec: FLE-132-01-G-DV-K-TR
- J3: Safety Dual row, 2 mm centers 4 position female header Samtec: TLE-102-01-G-DV-TR

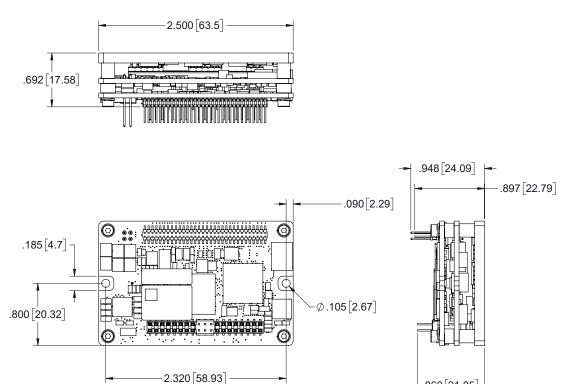
J1 POWER & MOTOR

Signal	J1 Pin		Signal
	37	38	
MOTU	35	36	моти
	33	34	
*	31	32	*
	29	30	
MOTV	27	28	MOTV
	25	26	
*	23	24	*
	21	22	
MOTW	19	20	мотw
	17	18	
*	15	16	*
	13	14	
HVCOM	11	12	НУСОМ
	9	10	
*	7	8	VLOGIC
	5	6	
+HV	3	4	+HV
	1	2	


* Do not connect to these pins

Copley Controls, 20 Dan Road, Canton, MA 02021, USA

P/N 16-01682 Rev 09


DIMENSIONS

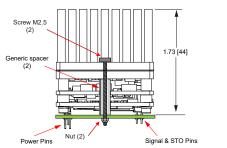
APV-090-50, APV-090-50-C

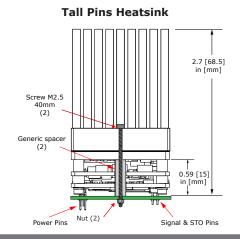
* These pins are longer for soldering to the user PC board.

APV-090-14, APV-090-30, APV-180-10, APV-180-20

- .860 21.85

MOUNTING: SOLDERED INTO USER PC BOARD

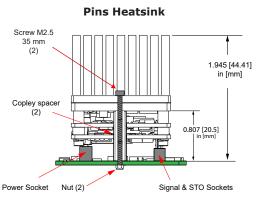

APV-090-50, APV-090-50-C


Kits are not available for this configuration. Here are the parts required:

Standoffs: 15 mm, diameter 4.5 mm, hollow, aluminum, RAF M0514-25, qty 2 Thermal pad: Copley CC 6-83985-01, qty 1

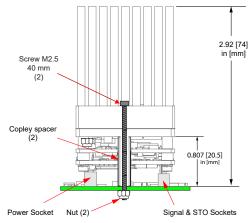
Thermal pad:	Copley CC 6-83985-01, qty 1
Pins Heatsink:	Copley CC 21-126260-01, qty 1
Screws:	M2.5, Length dependent on assembly, qty 2
Nuts:	M2.5, Dependent on assembly, qty 2

Pins Heatsink



MOUNTING: SOCKETED INTO USER PC BOARD

APV-090-14, APV-090-30, APV-180-10, APV-180-20


All connections shown socketed. With the pins heatsink the 35 mm screws are used. With the long pins heatsink the 40 mm screws are used.

PINS HEATSINK KIT: APV-HK

Part	Part Number	Qty
Screw	M2.5-0.45 x 35 mm slotted cheese head	2
Nut	M2.5-0.45 DIN nylon lock nut	2
Thermal material	Copley	1
Spacer	Copley non-threaded spacer 20.5 mm,	2
Heatsink	Pins Heatsink, 1 inch tall	1

Tall Pins Heatsink

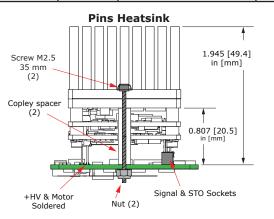
TALL PINS HEATSINK KIT: APV-TPK

Part	Part Number	Qty
Screw	M2.5-0.45 x 40 mm slotted cheese head	2
Nut	M2.5-0.45 DIN nylon lock nut	2
Thermal material	Copley	1
Spacer	Copley non-threaded spacer 20.5 mm,	2
Heatsink	Tall Pins Heatsink, 1.97 inch tall	1

CONNECTORS FOR SOCKETING

Part	Mfgr	Part Number	Qty
Power Socket J1	Samtec	SQT-119-01-G-D	1
Signal Socket J2	Samtec	FLE-132-01-G-DV-K-TR	1
STO Socket J3	Samtec	TLE-102-01-G-DV-TR	1

For the half-soldered configuration the dimensions, spacers, screws, and nuts are the same.

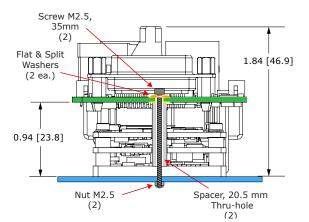

MOUNTING: HALF-SOCKETED INTO USER PC BOARD

APV-090-14, APV-090-30, APV-180-10, APV-180-20

Signal J2 and STO J3 are socketed. Power & motor J1 are soldered. With the pins heatsink 35 mm screws are used. With the long pins heatsink 40 mm screws are used.

CONNECTORS FOR HALF-SOCKETING

Part	Mfgr Part Number		Qty
Signal Socket J2	Samtec	FLE-132-01-G-DV-K-TR	1
STO Socket J3	Samtec	TLE-102-01-G-DV-TR	1



Tall Pins Heatsink 2.92 [74] in [mm] Screw M2.5 40 mm (2) Copley spacer (2) 0.807 [20.5] in [mm] +HV & Motor Signal & STO Sockets Nut (2) Soldered

PANEL MOUNTING

APV-090-14, APV-090-30, APV-180-10, APV-180-20

These models are shown below socketed into an EZ Board. Screws pass through the EZ Board and standoffs to nuts that hold the drive to the panel. Tapping a hole in the panel to accept the M2.5-0.45 screw allows the drive to be mounted and removed from one side of the panel. User-designed mounting boards should have the same conductive etch rings around the screw holes to provide PE grounding for their circuits.

APZ-090-50

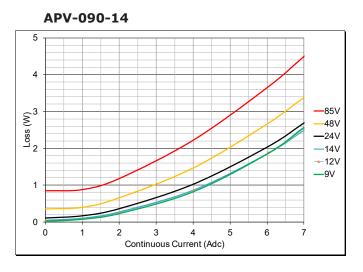
This model has the motor, +HV, and grounding pins soldered to the EZ board. The signal and STO pins are socketed. The dimensions and mounting to a panel are the same as the APV models.

IMPORTANT

The example shown here using the EZ Board to mount to a panel does not apply to panel mounting of the APV-090-50 and APV-090-50-C models. These models are incompatible with the EZ Board.

Standol

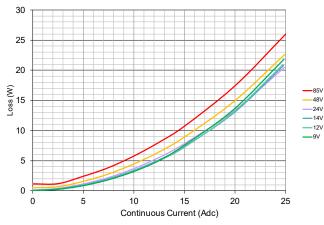
IMPORTANT

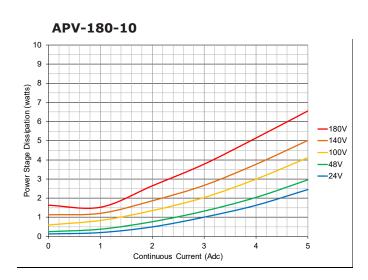

Standoffs must be metal, preferably brass. The EZ Board has conductive etch rings on each side of the screw holes which connect via etch through the holes. The screws then provide a path from the PE circuits on the drive through the standoffs and drive heatplate to the mounting panel which should be earthed. The etch on the bottom of the holes connects to the standoffs and drive heatplate, providing a PE ground for the heatplate. The thermal material between the mounting board and heatplate of the drive is non-conductive so effective grounding of the heatplate is provided by through the standoffs.

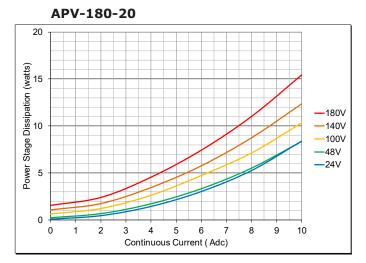
PANEL MOUNTING PARTS

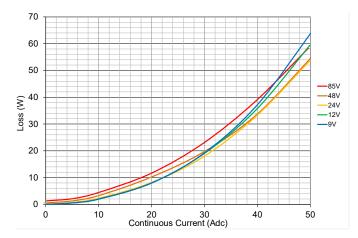
Part	Part Number	Qty
Screw	M2.5-0.45 x 35 mm slotted cheese head	2
Nut	M2.5-0.45 DIN nylon lock nut	2
Thermal material	Copley	1
Spacer	Copley non-threaded spacer 20.5 mm	2
Flat Washer	Metric, M2.5, flat	2
Split Lock Washer	Metric, M2.5, lock	2

THERMALS: PWM OUTPUTS DISSIPATION

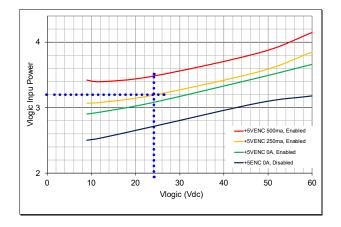

These charts show power dissipation in the drive when the PWM outputs are driving a motor. The following page shows the dissipation in the VLOGIC circuits that power the drives control circuits and external encoders. Adding the PWM dissipation to the VLOGIC dissipation will yield the total dissipation in Watts for the drive. The dotted lines in the APV-090-30 chart show a dissipation of 9.5 W. at a continuous current of 13 Adc and +HV = 85 Vdc.


APV-090-30





Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01682 Rev 09


APV-090-50-C

controls Accelnet Plus Micro Module CANopen APV

THERMALS: VLOGIC & ENCODER +5V OUTPUT DISSIPATION

APV All Models

These charts show power dissipation in the VLOGIC circuits that power the drives control circuits and external encoders. Adding the PWM dissipation to the VLOGIC dissipation will yield the total dissipation in Watts for the drive. The dotted lines in the chart show a dissipation of 3.2 W. at VLOGIC = 24 Vdc when the drive is in an Enabled state and outputting 250 mA for an encoder.

THERMAL RESISTANCE

Thermal resistance Rth is a measure of the way the drive resists the flow of heat produced internally to the environment. The lower the resistance the more freely the heat can be dissipated. Thermal resistance Rth is in units of degrees-Centigrade per Watt (C/W). Lowering Rth can be done with heatsinks that increase the area that is exposed to the environment and by moving air over the surfaces with fans. The flow of fan forced air is measured in Linear-Feet-per-Minute (LFM).

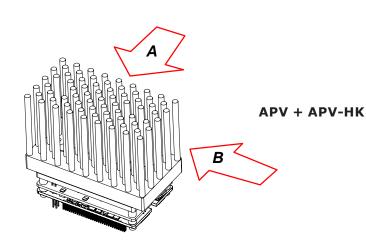
No Heatsink

LFM	0	100	200	300
Rth	8.5	6.5	5.5	4.0

Pins Heatsink A-Airflow

LFM	0	100	200	300
Rth	-	2.9	1.8	1.4

Pins Heatsink B-Airflow


LFM	0	100	200	300
Rth	-	4.2	2.6	1.9

Tall Pins Heatsink A-Airflow

LFM	0	100	200	300
Rth	-	1.3	0.9	0.7

Tall Pins Heatsink B-Airflow

LFM	0	100	200	300
Rth	-	2.2	1.4	1.1

Note: The Tall Pins Heatsink is not shown here.

THERMAL CALCULATIONS

THERMAL CALCULATIONS EXAMPLE: APV-090-30, +HV = 85 V, IOUT = 13 A, AMBIENT TEMP 32 °C

FIND THE COOLING MEANS REQUIRED WHEN DISSIPATION AND AMBIENT TEMP ARE KNOWN

Given: Tamb = 32 °C (89.6 °F), +HV dissipation = 9.5 W., VLOGIC dissipation = 3.2 W Tmax = 90 °C (drive shut-down temperature)

Find: Thermal resistance Rth: Delta-T = Tmax - Tamb = 90 - 32 = 58 °C Total dissipation = 9.5 + 3.2 = 12.7 W

Rth = Delta-T / dissipation = °C / Watt = 58 / 12.7 = 4.57 °C/W

From the tables above, there are three configuations that provide Rth less than 4.57 °C/W: No heat sink, forced air at 300 LFM With short pins heat sink, forced air at A or B direction, 100 LFM or greater

With long pins heat sink, convection with forced air not required

FIND THE MAX AMBIENT TEMP WHEN DRIVE CONFIGURATION IS KNOWN

Given: APV-090-30 with pins heatsink, forced-air at 200 LFM, A direction, dissipation is 12.7 W Rth = 1.8 °C/W Tmax = 90 °C (drive shut-down temperature)

Find: Max ambient operating temperature Delta-T = 12.7 W x 1.8 °C/W = 22.9 °C Max Tamb = Tmax - Delta-T = 90 - 22.9 = 67.1 °C Max ambient operating temperature is 45 °C so it can operate up to this temperature

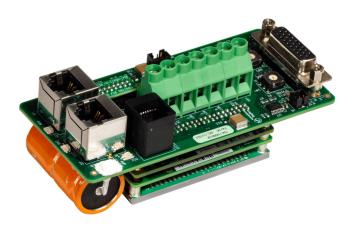
BEST PRACTICES FOR THERMAL MANAGEMENT

- All of the variables in an installation are usually not known.
- Calculations like those above are done with values that may be estimates, not exact values.
- Movement of air is very important. Even when enclosures have no openings, internal fans
- circulate the air to move heat from drives to the enclosure walls and to prevent hot-spotting. • A heat sink cuts the APV thermal resistance significantly with forced air.

Overheating can shut down drive but over-cooling is not possible. Measurement of the drive temperature with CME is easy and is the best indicator of the need for a heatsink. It shows the combined effect of all the variables: Thermal dissipation, ambient temperature, cooling means, the environment, etc.

EZ BOARD

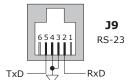
DESCRIPTION

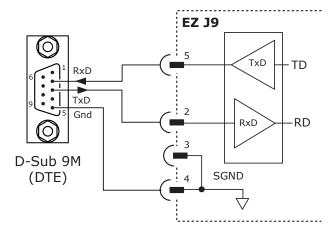

The EZ Boards provide connectivity to these APV models so they can be mounted directly to equipment surfaces.

The APV-EZ-090 EZ Board accepts these models as plug-ins: APV-090-14 APV-090-30

The APV-EZ-180 EZ Board accepts these models as plug-ins: APV-180-10 APV-180-20

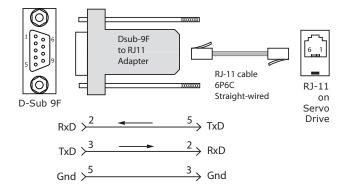
Important: The APV-EZ-090 EZ Board is not compatible with the APV-090-50 and APV-090-50-C models.


For higher current, the APZ-090-50 is an APV-090-50 soldered to the EZ Board at the factory as a single assembly.



RS-232 CONNECTION

The RS-232 port is used to configure the drive for stand-alone applications, or for configuration before it is installed into an CANopen network. CME software communicates with the drive over this link and is then used for complete drive setup. The CANopen Device ID that is set by the rotary switches can be monitored, and a Device ID programmed as well.


The RS-232 connector, J9, is a modular RJ-11 type that uses a 6-position plug, four wires of which are used for RS-232. A connector kit is available (SER-CK) that includes the modular cable, and an adaptor to interface this cable with a 9-pin RS-232 port on a computer.

SER-CK SERIAL CABLE KIT

The SER-CK provides connectivity between a D-Sub 9 male connector and the RJ-11 connector J9 on the EZ board. It includes an adapter that plugs into the COM1 (or other) port of a PC and uses a straight-through modular cable to connect to the APV. The connections are shown in the diagram below.

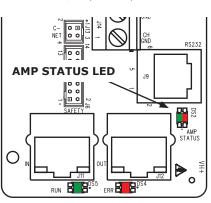
Don't forget to order a Serial Cable Kit SER-CK or SER-USB-RJ11 when placing your order for an APZ drive, or an EZ board.

EZ BOARD CANOPEN INDICATORS & ADDRESS SWITCHES

Dual RJ-45 sockets accept standard Ethernet cables. The IN port connects to a master, or to the OUT port of a device that is 'upstream' between the APV and the master. The OUT port connects to 'downstream' nodes. If the APV is the last node on a network, only the IN port is used. A 121 Ω terminator is required on the OUT port.

CANOPEN LEDS

RUN


Green: Shows the state of the FSA (Finite State Automaton):

- Off = INIT
- Blinking = Pre-operational
- Single Flash = Safe-operational Operational On =

ERR

Red: Shows errors such as watchdog timeouts and unsolicited APV state changes due to local errors:

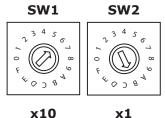
- Off = CANopen communications are working correctly
- Blinking = Invalid configuration, general configuration error
- Single Flash = Local error, slave has changed CANopen state autonomously
- Double Flash = PDO or CANopen watchdog timeout, or an application watchdog timeout has occurred

CANopen LEDs

AMP STATUS LED A bi-color LED gives the state of the drive. Colors do not alternate, and can be solid ON or blinking. If multiple conditions occur, only the top-most condition will be displayed. When that condition is cleared the next one below will shown.

		, , , , , , , , , , , , , , , , , , , ,
Red/Blinking	=	Latching fault. Operation can not resume until drive is Reset.
Red/Solid	=	Transient fault condition. Drive can resume operation when the condition causing the fault is removed.
Green/Slow-Blinking	=	Drive OK but NOT-enabled. Can run when enabled.
Green/Fast-Blinking	=	Positive or Negative limit switch active. Drive can only move in direction not inhibited by limit switch.
Green/Solid	=	Drive OK and enabled. Can run in response to reference inputs or CANopen commands.

LATCHING FAULTS

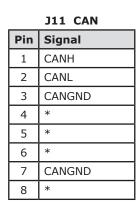

Default	Optional (programmable)
Short circuit (Internal or external)	Over-voltage
Drive over-temperature	Under-voltage
Motor over-temperature	Motor Phasing Error
Feedback Error	Command Input Lost
Following Error	Motor Wiring Disconnected
	Over Current (latched)

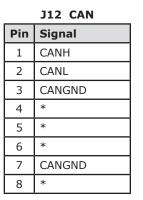
CANopen DEVICE ID

In an CANopen network, slaves are automatically assigned fixed addresses based on their position on the bus. When a device must have a positive identification that is independent of cabling, a Device ID is needed. In the EZ board this is provided by two 16-position rotary switches with hexadecimal encoding. These can set the Device ID of the drive from $0x01 \sim 0xFF$ ($1 \sim 255$ decimal). The chart shows the decimal values of the hex settings of each switch.

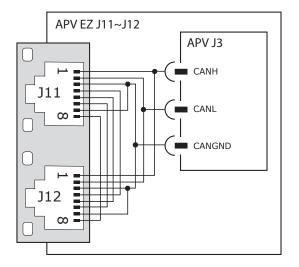
Example 1: Find the switch settings for decimal Device ID 107:

- 1) Find the highest number under SW1 that is less than 107 and set SW1 to the hex value in the same row: 96 < 107 and 112 > 107, so SW1 = 96 = Hex 6
- 2) Subtract 96 from the desired Device ID to get the decimal value of switch SW2 and set SW2 to the Hex value in the same row: SW2 = (107 - 96) = 11 = Hex B


CANopen Device ID Switch Decimal values


	SW1	SW2
HEX	DI	EC
0	0	0
1	16	1
2	32	2
3	48	3
4	64	4
5	80	5
6	96	6
7	112	7
8	128	8
9	144	9
Α	160	10
В	176	11
С	192	12
D	208	13
E	224	14
F	240	15

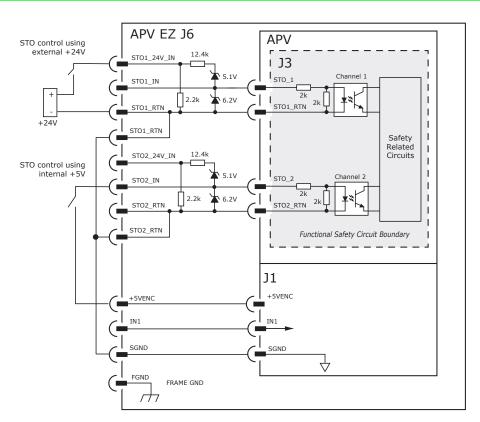
EZ BOARD CANOPEN CONNECTORS


CANOPEN CONNECTORS

Dual RJ-45 connectors that accept standard Ethernet CAT-5 cables are provided for CANopen connectivity.

* These pins are pass-through and have no connections to the drive circuits.

EZ BOARD SAFE TORQUE OFF (STO)

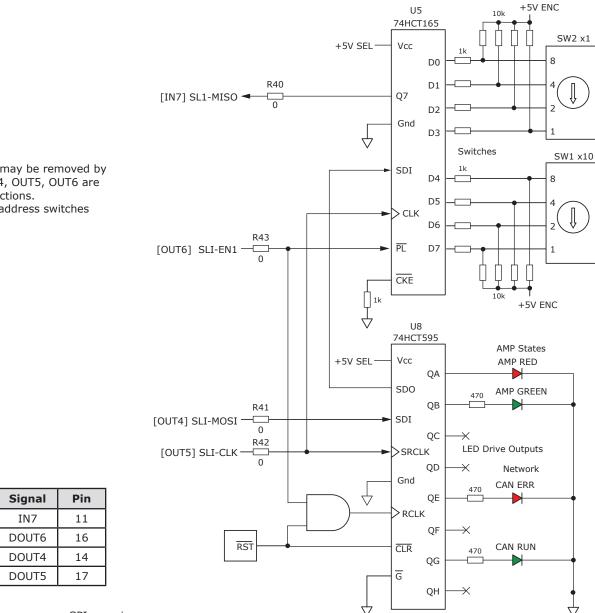

DESCRIPTION

This shows the use of the internal +5V or external 24V to energize the STO inputs.

Both STO inputs must be energized in order to enable the drive. IN1, the hardware Enable input is for use with an immediate contact relay to bring the motor to a stop before a delayed contact relay de-energizes the STO inputs and prevents torque production in the motor.

J6 STO					
Signal	Pin		Signal		
STO1_RTN	1	2	STO1_24V_IN		
STO1_RTN	3	4	STO1_IN		
n.c.	5	6	n.c.		
STO2_RTN	7	8	STO2_24V_IN		
STO2_RTN	9	10	STO2_IN		
n.c.	11	12	n.c.		
SGND	13	14	FGND		
IN1 15		16	+5VENC		

n.c. = No connection



controls Accelnet Plus Micro Module CANopen APV

EZ BOARD SLI PORT SWITCHES & LEDS

CANOPEN DEVICE ID (STATION ALIAS) SWITCH CONNECTIONS

The graphic below shows the connections to the CANopen Device ID switches and status LEDs. The switches are read after the drive is reset, or powered-on. When changing the settings of the switches, be sure to either reset the drive, or to power it off-on. Outputs [OUT4,5,6,] and input [IN7] operate as an SLI port which reads the settings on the CANopen Device ID switches, and controls the Amp and CANopen status LEDs.

NOTE:

R40, R41, R42, R43 may be removed by the user if IN7, OUT4, OUT5, OUT6 are needed for other functions. This will disable the address switches and LEDS.

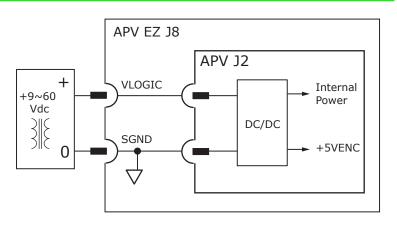
SLI PORT

SLI-Port	Signal	Pin
SLI-MISO (IN7)	IN7	11
SLI-EN1 (OUT6)	DOUT6	16
SLI-MOSI (OUT4)	DOUT4	14
SLI-CLK (OUT5)	DOUT5	17

Note:

The SLI-xxxx naming appears as SPI-xxxx in the Reference Design schematic. The SPI interface is not supported in the APV.

EZ BOARD VLOGIC

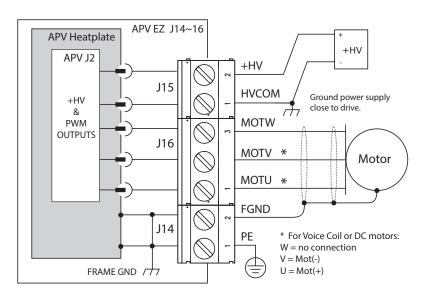

DESCRIPTION

Powers the internal logic and control circuits in the drive. When using the STO feature, it must be produced by power supplies with transformer isolation from the mains and PELV or SELV ratings and a maximum output voltage of 60 Vdc. If the motor can operate from voltages of 60 Vdc or

less, the +HV and VLOGIC can be driven from a single power supply.

J8 VLOGIC

Pin	EZ-Board	Signal
1	VLOGIC	+24V_VLOGIC
2	SGND	SGND



EZ BOARD +HV & MOTOR CONNECTIONS

DESCRIPTION

J15 provides connection to the DC power supply. J16 carries three conductors for brushless motors. J14-1 provides a connection for a shielded cable connecting the motor housing to chassis ground. The PE (Protective Earth) terminal provides a single connection to earth for bonding of the APV to an earth-ground point.

J#	Pins	EZ-Board	Signal
J15	2	+HV	+HV
712	1	HVCOM	HVCOM
	3	MOT W	MOTW
J16	2	MOT V *	MOTV
	1	MOT U *	MOTU
J14	2	FGND	CHASSIS
514	1	PE	PE

EZ BOARD I/O CONNECTORS

copley

controls

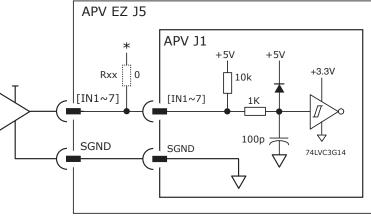
EZ-Board	Signal	J5 Pins
IN1 Enable	IN1	4
IN2	IN2	3
IN3	IN3	6
IN4	IN4	5
IN5	IN5	8
IN6 Encoder Fault	IN6	7
IN7 SLI MISO	IN7	10
SGND	SGND	15, 17, 18

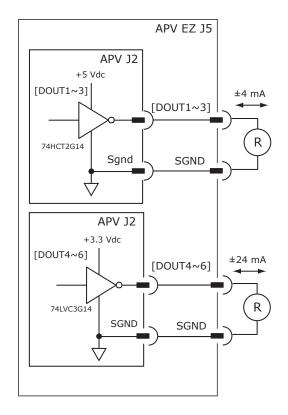
Logic inputs max input voltage is +6 Vdc.

IN5 is connected to P1, the primary encoder Motemp input. If it is not used for that function then IN5 is available as a logic input.

* Rxx shows the locations of 0 Ω resistors that are in place by default as R44 and R40.

R44 connects the Encoder Fault signal to IN6.


R40 connects the SLI-MISO signal to IN7 which is used by the SLI port that controls the LEDs and reads the address switches. If neither of these functions are needed then R40 and/or R44 can be removed making


IN6 & IN7 available as logic inputs

LOGIC OUTPUTS

EZ-Board Signal **J5 Pins** DOUT1 12 DOUT1 DOUT2 DOUT2 9 DOUT3 (Brake) DOUT3 14 DOUT4 (SLI-MOSI) DOUT4 11 DOUT5 (SLI-CLK) DOUT5 16 DOUT6 (SLI-EN1) DOUT6 13 SGND SGND 15, 17, 18

OUT3 is connected by default to the MOSFET that is the Brake output on J10. OUT1~2 are available is logic outputs. OUT4~6 connect to the SLI circuit that drives the displays and reads the address switches. If the SLI function is not needed then these outputs can be used as logic outputs by removing the Rxx as follows: OUT4: R41

OUT5: R42

OUT6: R43

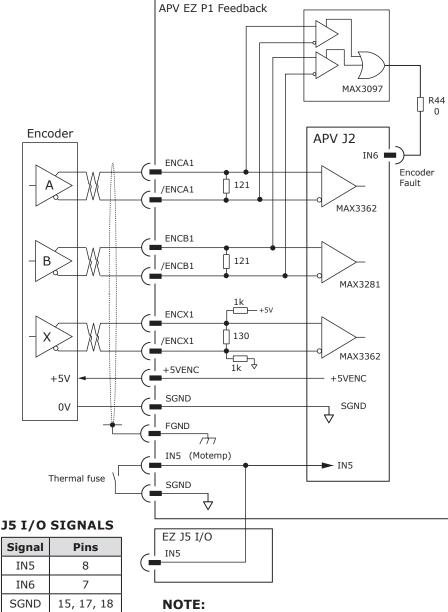
EZ BOARD PRIMARY FEEDBACK CONNECTOR P1

QUAD A/B ENCODER WITH FAULT PROTECTION

Encoders with differential line-driver outputs are required (single-ended encoders are not supported) and provide incremental position feedback via the A/B signals. The MAX3097 receiver has differential inputs with fault protections for the following conditions: *Short-circuits line-line:* This produces a near-zero voltage between A & /A or B & /B which is below the differential fault threshold.

Open-circuit condition:

This will produce the same fault condition as a short-circuit across the inputs. *Low differential voltage detection*: This is possible with very long cable runs and a fault will occur if the


±15kV ESD protection: differential input voltage is < 200mV. The 3097 has protection against high

The 3097 has protection against high-voltage discharges using the Human Body Model. A fault occurs if the input common-mode voltage is outside of the range of -10V to +13.2V

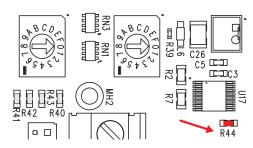
The 121Ω terminator resistor will pull the inputs together if either side (or both) is open.

FAULT DETECTION

Extended common-mode range:

IN5 on the feedback connector is connected to the drive IN5.

P1 ENCODER SIGNALS

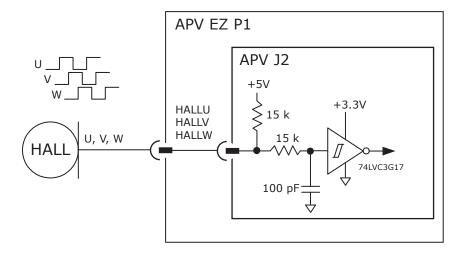

EZ-Board	Signal	Pins
Enc1 A	ENCA1	13
Enc1 /A	/ENCA1	12
Enc1 B	ENCB1	11
Enc1 /B	/ENCB1	10
Enc1 X	ENCX1	9, 23
Enc1 /X	/ENCX1	8, 22
+5V ENC	+5VENC	6, 17
[IN5] Motemp	IN5	7
FGND	FGND	*
SGND	SGND	5,16, 25,26

* FGND on P1 is the metal shell.

IN5 MOTEMP SIGNALS

Connector	Signal	Pins
F7 P1	IN5	7
EZ PI	SGND	5, 16, 25, 26
F7 15	IN5	8
EZ 13	SGND	15, 17, 18

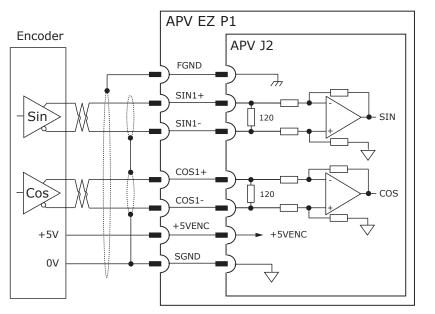
R44 LOCATION


NOTE:

R44 connects IN6 to the encoder fault detection by default. If this feature is not used, then removing R44 allows IN6 to be programmed for user's function.

controls Accelnet Plus Micro Module CANopen APV

EZ BOARD PRIMARY FEEDBACK CONNECTOR P1


HALLS

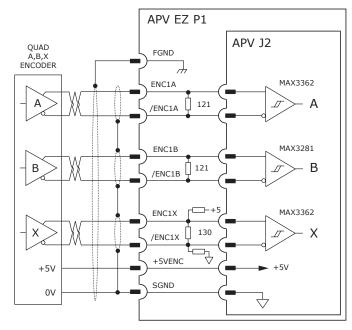
P1 HALL SIGNALS

HALLS	Signal	Pins
Hall U	HALLU	2
Hall V	HALLV	3
Hall W	HALLW	4

SIN/COS ENCODERS

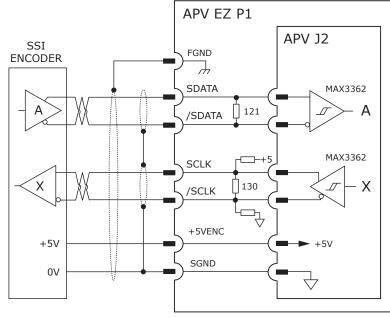
P1 SIN/COS SIGNALS

Sin/Cos	Signal	Pins
Sin(+)	SIN1+	19
Sin(-)	SIN1-	18
Cos(+)	COS1+	21
Cos(-)	COS1-	20


P1 +5V & SGND

Signal	Pins
+5VENC	6, 17
SGND	5, 16, 25, 26

Note that double-shielded cable is used for the Sin/Cos signals that are analog and more susceptible to noise. Two inner shields are used providing one for each twisted-pair and these connect to SGND. The outer shield connects to Frame Ground on the drive end is it not connected to the motor frame on the other. With the cable for the PWM outputs to the motor connected to Frame Ground on the drive end and the motor casing on the other there is a return path for currents produced by the capacitance between the UVW output wires and the motor cable shield.


EZ BOARD PRIMARY FEEDBACK CONNECTOR P1

QUAD ENCODER WITH INDEX

SSI ABSOLUTE ENCODER

The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or control system. The APV drive provides a train of clock signals in differential format to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The number of encoder data bits and counts per motor revolution are programmable. The hardware bus consists of two signals: SCLK and SDATA. The SCLK signal is only active during transfers. Data is clocked in on the falling edge of the clock signal.

A/B/X SIGNALS

QUAD	Signal	P1 Pins
Enc1 A	ENCA1	13
Enc1 /A	/ENCA1	12
Enc1 B	ENCB1	11
Enc1 /B	/ENCB1	10
Enc1 X	ENCX1	9
Enc1 /X	/ENCX1	8
+5V ENC	+5VENC	6,17
SGND	SGND	5,16,25,26
FGND	FGND *	27, 28

* FGND on P1 is the metal shell of the connector. This makes contact with the feedback cable backshell which then makes contact with the motor feedback cable's shielding. It is shown as a pins 27 & 28 which is how it appears in the EZ board schematic.

BISS ABSOLUTE ENCODER

BiSS is an - Open Source - digital interface for sensors and actuators. BiSS refers to principles of well known industrial standards for Serial Synchronous Interfaces like SSI, AS-Interface® and Interbus® with additional options. Serial Synchronous Data Communication

Cyclic at high speed

2 unidirectional lines Clock and Data Line delay compensation for high speed data

transfer

Request for data generation at slaves Safety capable: CRC, Errors, Warnings Bus capability incl. actuators

Bidirectional

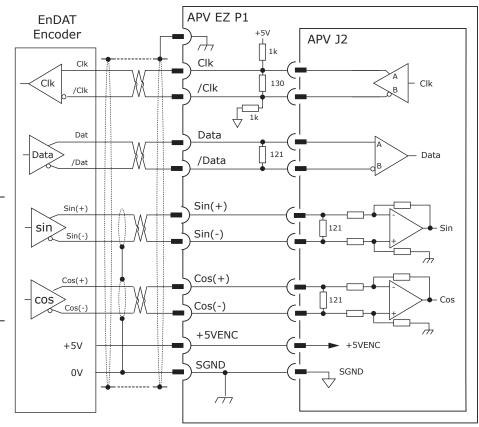
BiSS B-protocol: Mode choice at each cycle start BiSS C-protocol: Continuous mode

SSI, BISS SIGNALS

SSI	BiSS	Signal	P1 Pins
SDATA	MA+	ENCA1	13
/SDATA	MA-	/ENCA1	12
SCLK	SL+	ENCX1	9
/SCLK	SL-	/ENCX1	8
+5V		+5VENC	6,17

Note: Single (outer) shields should be connected at the drive end. Inner shields should only be connected to Signal Ground on the drive.

EZ BOARD PRIMARY FEEDBACK CONNECTOR P1

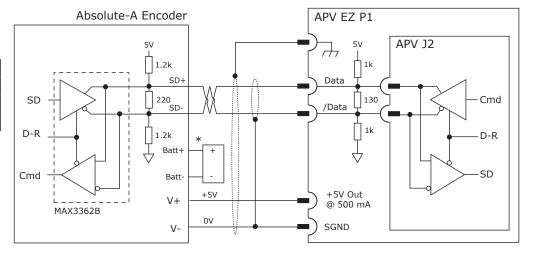

ENDAT ABSOLUTE ENCODER

The EnDat interface is a Heidenhain interface that is similar to SSI in the use of clock and data signals, but which also supports analog Sin/Cos channels from the same encoder. The number of position data bits is programmable as is the use of Sin/Cos channels. Use of Sin/Cos incremental signals is optional in the EnDat specification.

ENDAT SIGNALS

EnDAT	Signal	P1 Pins
Clk	ENCX1	9
/Clk	/ENCX1	8
Data	ENCA1	13
/Data	/ENCA1	12
Sin(+) *	SIN1+	19
Sin(-) *	SIN1-	18
Cos(+) *	COS1+	21
Cos(-) *	COS1-	20
+5V	+5VENC	6,17
0V	SGND	5, 16 25, 26

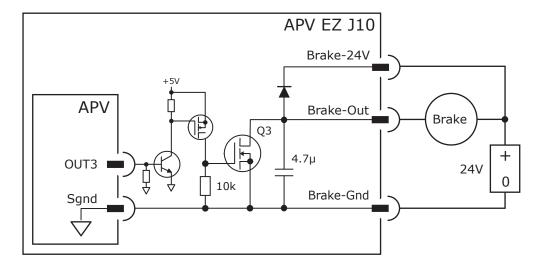
* Sin/Cos optional with EnDat 2.2 or any 1 Mbit or faster Endat Sin/Cos required if EnDat 2.1 < 1 Mbit</p>


ABSOLUTE-A ENCODER

The Absolute A interface is a serial, half-duplex type that is electrically the same as RS-485. Note the battery which must be connected. Without it, the encoder will produce a fault condition.

ABSOLUTE-A SIGNALS

ABS-A	Signal	J2 Pins
Data	ENCA1	13
/Data	/ENCA1	12
+5V	+5VENC	6, 17


- Absolute A
- Tamagawa Absolute A
- Panasonic Absolute A Format
- Sanyo Denki Absolute A
- * Battery optional

EZ BOARD BRAKE OUTPUT

The brake circuit on the EZ board is a MOSFET driven by OUT3 of the APV.

- Brake output [OUT3]
- 24V Compatible
- Programmable functions

Specifications

Output	Data	Notes
Voltage Range	Max	+30 Vdc
Output Current	Ids	1.0 Adc

HI/LO definitions: outputs

Input	State	Condition
BRAKE	LO	Output MOSFET Q3 is OFF Brake is un-powered and locks motor Motor cannot move Brake state is Active
[OUT3]	HI	Output MOSFET Q3 is ON Brake is powered, releasing motor Motor is free to move Brake state is NOT-Active

CME Default Setting for Brake Output [OUT3] is "Brake - Active Low" Active = Brake is holding motor shaft (i.e. the *Brake is Active*)

Motor cannot move No current flows in coil of brake CME I/O Line States shows [OUT3] as LO BRK Output voltage is HI (24V), MOSFET Q3 is OFF Servo drive output current is zero Servo drive is disabled, PWM outputs are off Inactive = Brake is not holding motor shaft (i.e. the *Brake is Inactive*) Motor can move Current flows in coil of brake CME I/O Line States shows [OUT3] as HI BRK output voltage is LO (~0V), MOSFET Q3 is ON Servo drive is enabled, PWM outputs are on Servo drive output current is flowing The EZ brake circuit is referenced to SGND in the APV.

J10 BRAKE SIGNALS

Pin	Brake	Signal
1	Brake-24V	+24V_IN
2	Brake-Out	BRAKE
3	Brake-Gnd	24V_GND_IN

copley Accelnet Plus Micro Module CANopen APV

EZ BOARD CONNECTORS

P1 ENCODER 1

Pin	EZ Board	Pin	EZ Board
26	SGND	18	Sin(-)
25	SGND	17	+5V ENC
24	N.C.	16	SGND
23	Enc1 X	15	Enc1 S
22	Enc1 /X	14	Enc1 /S
21	Cos(+)	13	Enc1 A
20	Cos(-)	12	Enc1 /A
19	Sin(+)	11	Enc1 B
		10	Enc1 /B

Pin EZ Board 9 Enc1 X 8 Enc1 /X 7 [IN5] Motemp 6 +5V ENC 5 SGND 4 Hall W 3 Hall U 2 Hall U 1 FGND		
8 Enc1 /X 7 [IN5] Motemp 6 +5V ENC 5 SGND 4 Hall W 3 Hall V 2 Hall U	Pin	EZ Board
7 [IN5] Motemp 6 +5V ENC 5 SGND 4 Hall W 3 Hall V 2 Hall U	9	Enc1 X
6 +5V ENC 5 SGND 4 Hall W 3 Hall V 2 Hall U	8	Enc1 /X
5SGND4Hall W3Hall V2Hall U	7	[IN5] Motemp
4 Hall W 3 Hall V 2 Hall U	6	+5V ENC
3 Hall V 2 Hall U	5	SGND
2 Hall U	4	Hall W
	3	Hall V
1 FGND	2	Hall U
	1	FGND

J10 BRAKE

Pin	EZ Board	
3	HVCOM	
2	Brake output	
1	+24V Input	

J8 V-LOGIC

Pin	EZ Board
1	VLOGIC
2	SGND

J15 DC-POWER

Pin	EZ Board		
2	+HV		
1	HV COM		

J16 MOTOR

Pin	EZ Board
3	Mot W
2	Mot V
1	Mot U

J14 GROUNDS

Pin	EZ Board
2	FGND
1	PE

J9 RS-232

Pin	EZ Board
1	N.C.
2	RxD
3	SGND
4	SGND
5	TxD
6	N.C.

1	N.C.
2	RxD
3	SGND
4	SGND
5	TxD
6	N.C.

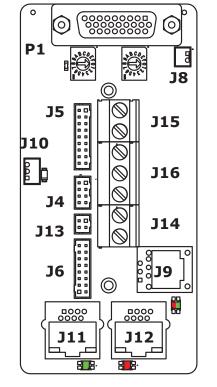
J12 CAN-OUT

Pin	EZ Board
1	CANH
2	CANL
3	CANGND
4	Pass-thru
5	Pass-thru
6	Pass-thru
7	CANGND
8	Pass-thru

1F T / O

J5 1/0				
EZ Board	Pin		EZ Board	
Aref(-)	2	1	Aref(+)	
Enable IN1	4	3	IN2	
IN3	6	5	IN4	
Motemp IN5	8	7	IN6 Enc-Fault **	
* SLI-MISO IN7	10	9	OUT2	
OUT1	12	11	OUT4 SLI-MOSI *	
* Brake OUT3	14	13	OUT6 SLI-EN1 *	
* SLI-CLK OUT5	16	15	SGND	
SGND	18	17	SGND	

J4 ENCODER 2


EZ Board	Pin		EZ Board
Enc2 A	2	1	Enc2 /A
Enc2 B	4	3	Enc2 /B
Enc2 X	6	5	Enc2 /X
SGND	8	7	+5V ENC

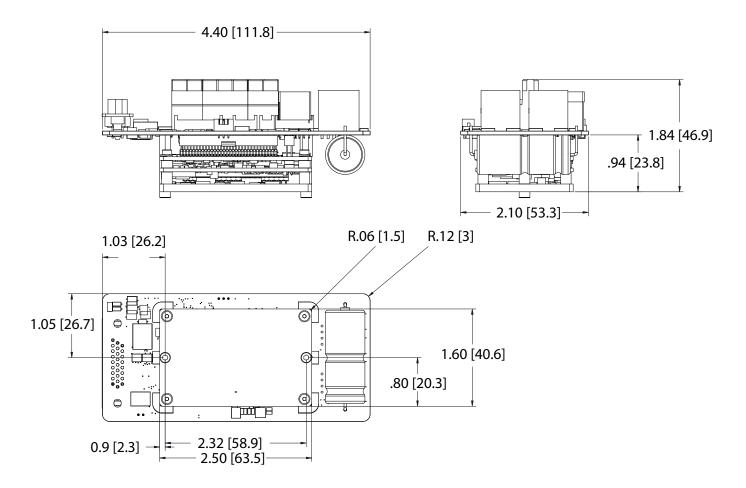
J13

EZ Board	Pin		EZ Board
***	2	1	***
***	4	3	***

J6 STO

EZ Board	Pin		EZ Board
IN1	15	16	+5VENC
SGND	13	14	FGND
n.c.	11	12	n.c.
STO2_RTN	9	10	STO2_IN
STO2_RTN	7	8	STO2_24V_IN
n.c.	5	6	n.c.
STO1_RTN	3	4	STO1_IN
STO1_RTN	1	2	STO1_24V_IN
	-		

* These signals are wired for the functions shown. They can be programmed for other functions but the default functions will no longer function.


** This input can be programmed for other functions by removing the resistor R44 that connects the input to the encoder 1 faultdetection circuit.

*** No connections

J11	CAN-IN
Pin	EZ Board
1	CANH
2	CANL
3	CANGND
4	Pass-thru
5	Pass-thru
6	Pass-thru
7	CANGND
8	Pass-thru

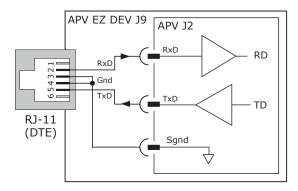
The dimensions shown here are for an APV drive socketed into an EZ Board

J9 RS-232

RxD

EZ DEVELOPMENT BOARD

DESCRIPTION


The APZ-090-50-C is an APV-090-50-C drive with the motor and +HV pins soldered to a Development Kit to support the 50 Adc peak and continuous current rating. The heatsink shown here is included.

RS-232 CONNECTION

The RS-232 port is used to configure the drive for stand-alone applications, or for configuration before it is installed into an CANopen network. CME software communicates with the drive over this link and is then used for complete drive setup. The CANopen Device ID that is set by the rotary switches can be monitored, and a Device ID programmed as well.

The RS-232 connector, J9, is a modular RJ-11 type that uses a 6-position plug, four wires of which are used for RS-232. A connector kit is available (SER-CK) that includes the modular cable, and an adaptor to interface this cable with a 9-pin RS-232 port on a computer.

J9 RS-232

Pin	EZ Board	Signal	
1	N.C.	N.C.	
2	RxD	RS232RX	
3	SGND	SGND	
4	SGND	SGND	
5	TxD	RS232TXD	
6	N.C.	N.C.	

The SER-CK provides connectivity between a D-Sub 9 male connector and the RJ-11 connector J9 on the EZ Development Board. It includes an adapter that plugs into the COM1 (or other) port of a PC and uses a straight-through modular cable to connect to the APV. The connections are shown in the diagram below.

TxD

Don't forget to order a Serial Cable Kit SER-CK or an SER-USB-RJ11 when placing your order for an APZ drive, or an EZ board.

Accelnet^{Plus} Micro Module CANopen APV controls

= Invalid configuration

Unsolicited state change

EZ DEVELOPMENT BOARD CANOPEN INDICATERS & ADDRESS SWITCHES

Red shows error conditions:

Dual RJ-45 sockets accept standard CAN cables. If the APV is the last node on a network, only one port is used. A 121 Ω terminator is required on the other port.

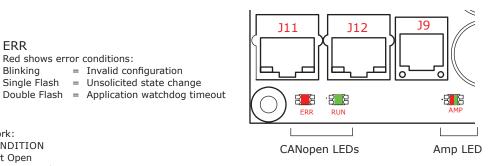
FRR

Blinking

Single Flash

CANOPEN LEDS

RUN


Green shows the CANopen State Machine: Off = Init state Blinking = Pre-operational Single Flash = Safe-operational

On = Operational

L/A (LINK/ACT)

Green indicates the state of the CANopen network: 1

LED	LINK	ACTIVITY		CONDITION
ON	Yes	No	=	Port Open
Flickering	Yes	Yes	=	Port Open with activity
Off	No	(N/A)	=	Port Closed

AMP LED

A bi-color LED gives the state of the drive. Colors do not alternate, and can be solid ON or blinking.

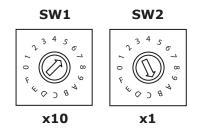
If multiple conditions occur, only the top-most condition will be displayed. When that condition is cleared the next one below will shown.

- Latching fault. Operation can not resume until drive is Reset. Red/Blinking = Red/Solid
 - Transient fault condition. Drive can resume operation when the condition causing the fault is removed. =
- Green/Slow-Blinking = Drive OK but NOT-enabled. Can run when enabled.
- Green/Fast-Blinking Positive or Negative limit switch active. Drive can only move in direction not inhibited by limit switch. =
 - Drive OK and enabled. Can run in response to reference inputs or CANopen commands.

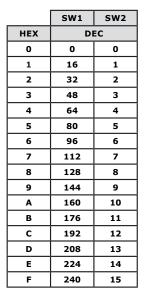
LATCHING FAULTS

Green/Solid

Default Short circuit (Internal or external) Drive over-temperature Motor over-temperature Feedback Error Following Error


Optional (programmable) Over-voltage Under-voltage Motor Phasing Error Command Input Lost Motor Wiring Disconnected Over Current (latched)

CANopen DEVICE ID


In an CANopen network, slaves are automatically assigned fixed addresses based on their position on the bus. When a device must have a positive identification that is independent of cabling, a Device ID is needed. In the EZ Development Board this is provided by two 16-position rotary switches with hexadecimal encoding. These can set the Device ID of the drive from 0x01~0xFF (1~255 decimal). The chart shows the decimal values of the hex settings of each switch.

Example 1: Find the switch settings for decimal Device ID 107:

- 1) Find the highest number under SW1 that is less than 107 and set SW1 to the hex value in the same row: 96 < 107 and 112 > 107, so SW1 = 96 = Hex 6
- 2) Subtract 96 from the desired Device ID to get the decimal value of switch SW2 and set SW2 to the Hex value in the same row: SW2 = (107 - 96) = 11 = Hex B

CANopen Device ID Switch Decimal values

EZ DEVELOPMENT BOARD CANOPEN CONNECTORS

+3.3V_TXRX1

ECATRX1-

CHASSIS

n.c.

CANOPEN CONNECTORS

Dual RJ-45 connectors that accept standard Ethernet CAT-5 cables are provided for CANopen connectivity.

112 ECAT OUT

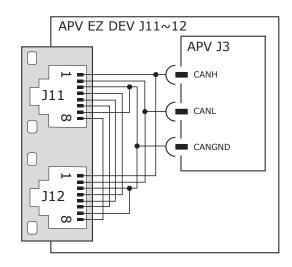
J11 ECAT-IN Pin EZ-Dev Signal 1 TX1+ ECATTX1+ 2 TXRX1 Term +3.3V_TXRX1 3 TX1 ECATTX1 4 RX1+ ECATRX1+

TXRX1 Term

RX1-

n.c.

FGND


5

6

7

8

JIZ ECAI-OUT					
	Pin	EZ-Dev	Signal		
	1	TX2+	ECATTX2+		
	2	TXRX2 Term	+3.3V_TXRX2		
	3	TX2-	ECATTX2-		
	4	RX2+	ECATRX2+		
	5	TXRX2 Term	+3.3V_TXRX2		
	6	RX2-	ECATRX2-		
	7	n.c.	n.c.		
	8	FGND	CHASSIS		

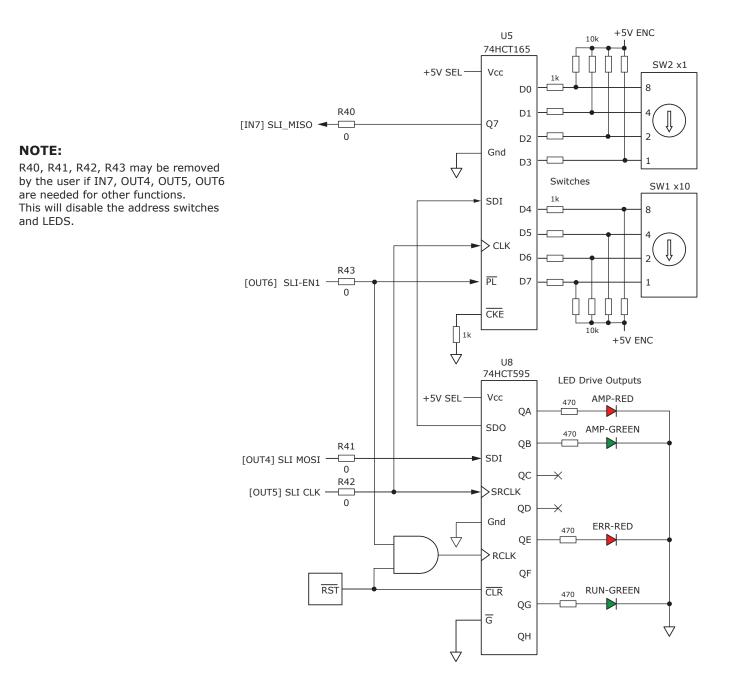
EZ DEVELOPMENT BOARD SAFE TORQUE OFF (STO)

DESCRIPTION

This shows the use of the internal 5V and external 24V to energize the STO inputs.

Both STO inputs must be energized in order to enable the drive. IN1, the hardware Enable input is for use with an immediate contact relay to bring the motor to a stop before a delayed contact relay de-energizes the STO inputs and prevents torque production in the motor.

STO control using	APV EZ DEV J6	APV
external +24V	STO-IN1(+) 24V 12.4k	i J3
	STO-IN1(+) 5V 5.1V	Channel 1
	2.2k 6.2V	
+24V	STO1-IN1(-)	Safety
STO control using	STO-IN2(+) 24V 12.4k	Related Circuits
internal +5V	STO-IN2(+) 5V 5.1V	Channel 2
	ST02-IN1(-) 2.2k 6.2V	
•-(=	STO2-IN1(-)	Functional Safety Circuit Boundary
		J1
	+5VENC	+5VENC
	IN1	
	SGND	SGND
	FGND	

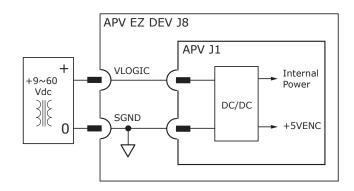

EZ-Dev	Pin		EZ-Dev
STO-IN1(-)	1	2	STO-IN1(+) 24V
STO-IN1(-)	3	4	STO-IN1(+) 5V
n.c.	5	6	n.c.
STO-IN2(-)	7	8	STO-IN2(+) 24V
STO-IN2(-)	9 10		STO-IN2(+) 5V
n.c.	. 11 12		n.c.
SGND	13 14		FGND
IN1	15	16	+5V ENC

controls Accelnet Plus Micro Module CANopen APV

EZ DEVELOPMENT BOARD SLI PORT SWITCHES & LEDS

CANOPEN DEVICE ID (STATION ALIAS) SWITCH CONNECTIONS

The graphic below shows the connections to the CANopen Device ID switches and status LEDs. The switches are read after the drive is reset, or powered-on. When changing the settings of the switches, be sure to either reset the drive, or to power it off-on. Outputs [OUT4,5,6] and input [IN7] operate as an SLI port which reads the settings on the CANopen Device ID switches, and controls the Amp and CANopen status LEDs.

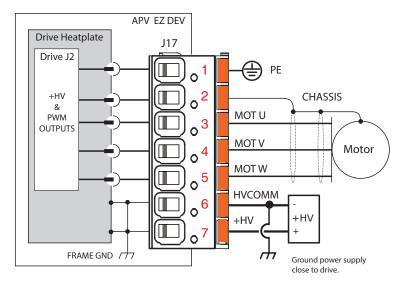

EZ DEVELOPMENT BOARD VLOGIC

DESCRIPTION

Powers the internal logic and control circuits in the drive. When using the STO feature, it must be produced by power supplies with transformer isolation from the mains and PELV or SELV ratings with a maximum output voltage of 60 Vdc. If the motor can operate from voltages of 60 Vdc or less, the +HV and VLOGIC can be driven from a single power supply.

J8 VLOGIC

Pins	EZ-Dev Signal	
1	VLOGIC	+24V_VLOGIC
2	SGND	SGND

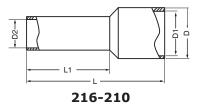


EZ DEVELOPMENT BOARD POWER, MOTOR, & GROUNDING CONNECTIONS

DESCRIPTION

J17 provides connection to the DC power supply, PWM outputs, and grounds. There are three conductors for brushless motors what provide and connection for a shielded cable connecting the motor housing to frame ground. The PE (Protective Earth) terminal provides a single connection to earth for bonding of the APV frame ground to an earth-ground point.

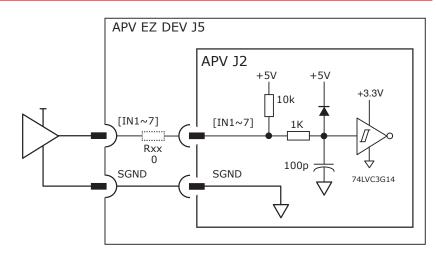
J17 +HV, MOTOR, GNDS				
Pins	EZ-Dev	Signal		
1	PE	PE		
2	FGND	CHASSIS		
3	MOT U	MOTU		
4	MOT V	MOTV		
5	MOT W	MOTW		
6	HVCOM	HVCOMM		
7	+HV	+HV		


CONDUCTOR TYPE	MM ²	AWG
Solid	0.75 ~ 16	18 ~ 4
Fine stranded	0.75 ~ 25	18 ~ 4
Fine stranded with ferrule with plastic collar	0.75 ~ 16	
Fine stranded with ferrule without plastic collar	0.75 ~ 16	N/A
Fine stranded with twin ferrule	0.75~ 6	

INSULATION STRIPPING	мм	INCH
Strip length	18 ~ 20	0.71 ~ 0.79

Wago ferrules shown are electro-tin plated, electrolytic copper, gastight crimped, according to DIN 46228, Part 4/09.90. Wago part numbers are shown but other ferrule types with comparable specifications may be used.

216-210 Dimensions L = 28 mm L1 = 18 mm D = 9.6 mm D1 = 8.8 mm D2 = 5.8 mm


FERRULES			
MM ²	AWG WAGO P/N		
16	6	216-210	
10	8	216-289	
6	10	216-288	
4	12 216-287		
2.5	14	216-286	
1.5	16	216-284	

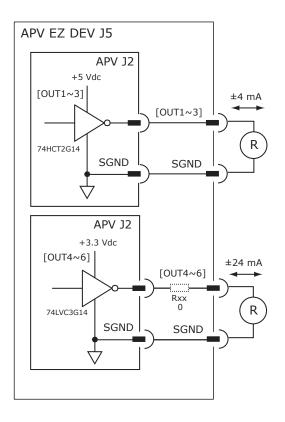
EZ DEVELOPMENT BOARD I/O CONNECTORS

LOGIC INPUTS

EZ-Dev	Signal	J5 Pins
IN1 Enable	IN1	4
IN2	IN2	3
IN3	IN3	6
IN4	IN4*	5
IN5	IN5*	8
IN6 Encoder Fault	IN6*	7
IN7 SLI MISO	IN7	10
SGND	SGND	15, 17, 18

Logic inputs max input voltage is +6 Vdc.

* Rxx shows the location of the four 0 Ω resistors that are in place by default as R40~R44.


R40 connects the SLI-MISO signal to IN7 which is used by the SLI port that controls the LEDs and reads the address switches. R44 connects the Encoder Fault signal to IN6.

If neither of these functions are needed then R40 and/or R44 can be removed making

IN6 & IN7 available as logic inputs

LOGIC OUTPUTS

EZ-Dev	Signal	J5 Pins
OUT1	DOUT1	12
OUT2	DOUT2	9
OUT3 Brake	DOUT3	14
OUT4 SLI-MOSI*	DOUT4	11
OUT5 SLI-CLK*	DOUT5	16
OUT6 SLI-EN1*	DOUT6	13
SGND	SGND	15, 17, 18

OUT1~2 are available as logic outputs.

OUT3 is connected by default to the MOSFET that is the Brake output on J10.

 \ast OUT4~6 connect to the SLI circuit that drives the displays and reads the address switches.

If the SLI function is not needed then these outputs can be used as logic outputs by removing the Rxx as follows:

R41 connects the SLI-MOSI signal to to DOUT4

R42 connects SLI-CLK to DOUT5

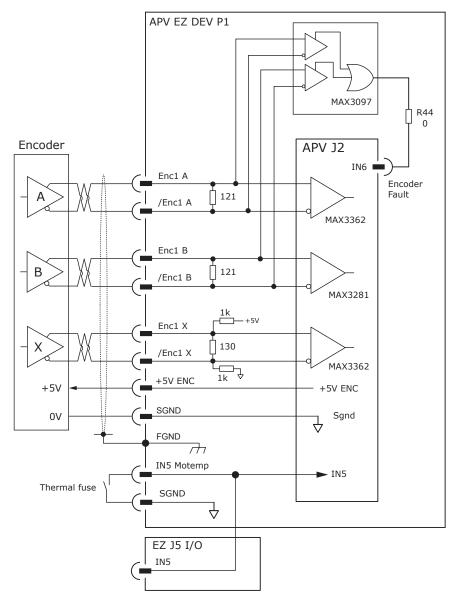
R43 connects SLI-EN1 to DOUT6

EZ DEVELOPMENT BOARD PRIMARY FEEDBACK CONNECTOR P1

QUAD A/B ENCODER WITH FAULT PROTECTION

Encoders with differential line-driver outputs are required (single-ended encoders are not supported) and provide incremental position feedback via the A/B signals. The MAX3097 receiver has differential inputs with fault protections for the following conditions: Short-circuits line-line: This produces a near-zero voltage between A & /A or B & /B which is below the differential fault threshold.

Open-circuit condition:


The 121Ω terminator resistor will pull the inputs together if either side (or both) is open. This will produce the same fault condition as a short-circuit across the inputs. Low differential voltage detection: This is possible with very long cable runs and a fault will occur if the differential input voltage is < 200mV.

Extended common-mode range:

±15kV ESD protection:

The 3097 has protection against high-voltage discharges using the Human Body Model. A fault occurs if the input common-mode voltage is outside of the range of -10V to +13.2V

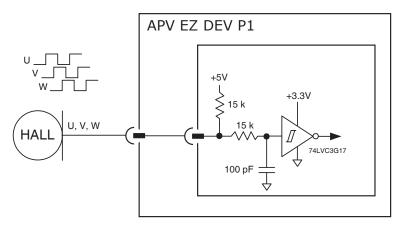
FAULT DETECTION

P1 ENCODER 1 SIGNALS

EZ-Dev	Signal	Pins
Enc1 A	ENCA1	13
Enc1 /A	/ENCA1	12
Enc1 B	ENCB1	11
Enc1 /B	/ENCB1	10
Enc1 X	ENCX1	9
Enc1 /X	/ENCX1	8
+5V ENC	+5VENC	6, 17
IN5 Motemp	IN5	7
SGND	SGND	5,16, 25,26

SGND = Signal Ground

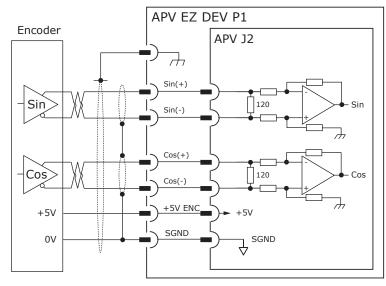
NOTE:


IN5 on the feedback connector is connected to the drive IN5.

IN5 MOTEMP SIGNALS

EZ-Dev	Signal	Pins
	IN5	7
P1	SGND	5, 16, 25, 26
	IN5	8
J5	SGND	15, 17, 18

EZ DEVELOPMENT BOARD PRIMARY FEEDBACK CONNECTOR P1


HALLS

P1 HALL SIGNALS

EZ-Dev	Signal	Pins
Hall U	HALLU	2
Hall V	HALLV	3
Hall W	HALLW	4

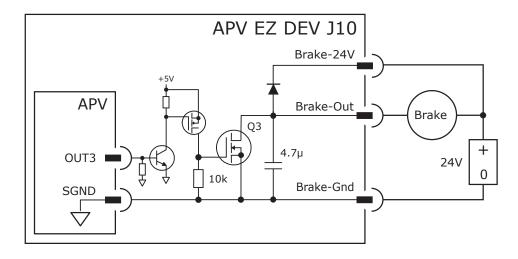
SIN/COS ENCODERS

P1 SIN/COS SIGNALS

EZ-Dev	Signal	Pins
Sin(+)	SIN1+	19
Sin(-)	SIN1-	18
Cos(+)	COS1+	21
Cos(-)	COS1-	20

P1 +5V & SGND

EZ-Dev	Signal	Pins
+5V	+5VENC	6, 17
SGND	SGND	5, 16, 25, 26


Note that double-shielded cable is used for the Sin/Cos signals that are analog and more susceptible to noise. Two inner shields are used providing one for each twisted-pair and these connect to SGND. The outer shield connects to Frame Ground on the drive end and is it not connected to the motor frame on the other. With the cable for the PWM outputs to the motor connected to Frame Ground on the drive end and the

motor casing on the other there is a return path for currents produced by the capacitance between the UVW output wires and the motor cable shield.

EZ DEVELOPMENT BOARD BRAKE OUTPUT

The brake circuit on the EZ Development Board is a MOSFET driven by OUT3 of the APV.

- Brake output [OUT3]
- 24V Compatible
- Programmable functions

Specifications

Output	Data	Notes
Voltage Range	Max	+30 Vdc
Output Current	Ids	1.0 Adc

HI/LO definitions: outputs

Input	State	Condition
BRAKE	LO	Output MOSFET Q3 is OFF Brake is un-powered and locks motor Motor cannot move Brake state is Active
[OUT3]	HI	Output MOSFET Q3 is ON Brake is powered, releasing motor Motor is free to move Brake state is NOT-Active

CME Default Setting for Brake Output [OUT3] is "Brake - Active Low" Active = Brake is holding motor shaft (i.e. the *Brake is Active*)

Motor cannot move No current flows in coil of brake CME I/O Line States shows [OUT3] as LO Brake-Out voltage is HI (24V), MOSFET Q3 is OFF Servo drive output current is zero Servo drive is disabled, PWM outputs are off Inactive = Brake is not holding motor shaft (i.e. the *Brake is Inactive*) Motor can move Current flows in coil of brake CME I/O Line States shows [OUT3] as HI Brake-Out voltage is LO (~0V), MOSFET Q3 is ON

- Servo drive is enabled, PWM outputs are on
- Servo drive output current is flowing

The EZ brake circuit is referenced to SGND in the APV.

J10 BRAKE SIGNALS

EZ-Dev	Signal	Pin
Brake-24V	+24V_IN	1
Brake-Out	BRAKE	2
Brake-Gnd	24V_GND_IN	3

EZ DEVELOPMENT BOARD CONNECTORS

P1 ENCODER 1

Pin	Signal	Pin	Signal
19	Sin(+)	10	Enc1 /B
20	Cos(-)	11	Enc1 B
21	Cos(+)	12	Enc1 /A
22	Enc1 /X	13	Enc1 A
23	Enc X	14	Enc1 /S
24	N.C.	15	Enc1 S
25	SGND	16	SGND
26	SGND	17	+5V ENC
		18	Sin(-)

_		
	Pin	Signal
	1	FGND
	2	Hall U
	3	Hall V
]	4	Hall W
	5	SGND
	6	+5V ENC
	7	IN5 Motemp
	8	Enc1 /X
	9	Enc1 X

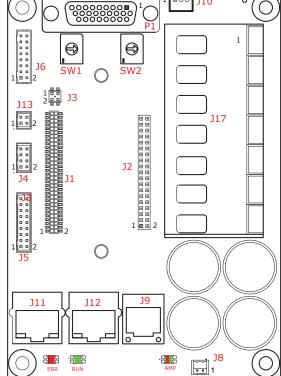
J10 BRAKE

Pin	Signal
1	Brake-24V
2	Brake-Out
3	Brake-Gnd

^{∎σο} J10

0

J6 STO


50 51 0				
Signal	Pin		Signal	
IN1	15	16	+5V ENC	
SGND	13	14	FGND	
n.c.	11	12	n.c.	
STO-IN2(-)	9	10	STO-IN2(+) 5V	
STO-IN2(-)	7	8	STO-IN2(+) 24V	
n.c.	5	6	n.c.	
STO-IN1(-)	3	4	STO-IN1(+) 5V	
STO-IN1(-)	1	2	STO-IN1(+) 24V	

J13

Signal	Pin		Signal
***	3	4	***
***	1	2	***

*** No connections J4 ENCODER 2

J4 LINCODER 2				
Signal	Pin		Signal	
+5V ENC	7	8	SGND	
Enc2 /X	5	6	Enc2 X	
Enc2 /B	3	4	Enc2 B	
Enc2 /A	1	2	Enc2 A	

J17 GROUNDS Pin Signal

	Signal
1	PE
2	FGND

J17 MOTOR

Pin	Signal	
3	Mot U	
4	Mot V	
5	Mot W	

J17 DC-POWER

Pin	Signal
6	HVCOM
7	+HV

J8 V-LOGIC

Pin	Signal	
1	VLOGIC	
2	SGND	

J5 I/O

Signal	Pin		Signal
SGND	17	18	SGND
SGND	15	16	OUT5 SLI-CLK *
* SLI-EN1 OUT6	13	14	OUT3 Brake *
* SLI-MOSI OUT4	11	12	OUT1
OUT2	9	10	IN7 SLI-MISO *
** Enc-Fault IN6	7	8	IN5 Motemp
IN4	5	6	IN3
IN2	3	4	IN1 Enable
Aref(+)	1	2	Aref(-)

J11 CAN-IN		
Pin	Signal	
1	CANH	
2	CANL	
3	CANGND	
4	Pass-thru	
5	Pass-thru	
6	Pass-thru	
7	CANGND	
8	Pass-thru	

		\sim
112	CAN-OUT	
J 1 2	CAN-OUT	

Signal CANH

CANL

CANGND

Pass-thru

Pass-thru

Pass-thru

CANGND

Pass-thru

 \ast These signals are wired for the functions shown.

They can be programmed for other functions but the default functions will no longer function.

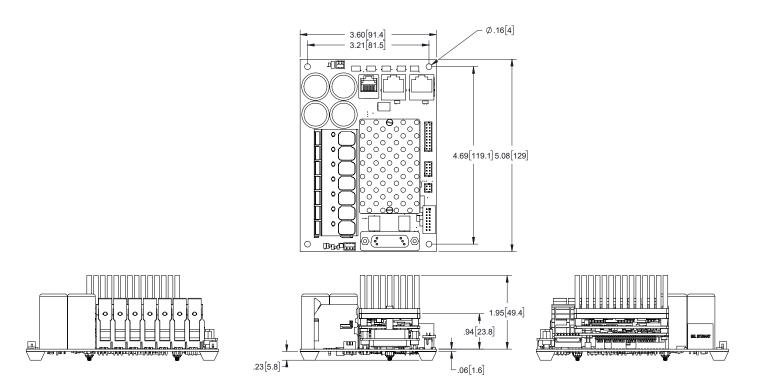
** This input can be programmed for other functions by removing the resistor R44 that connects the input to the encoder 1 fault-detection circuit.

Pin

1

3

4


5

6

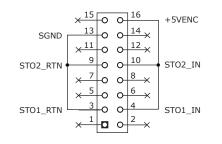
7

8

EZ DEVELOPMENT BOARD DIMENSIONS

APV-EZ-STO SAFE TORQUE OFF DISABLING ACCESSORY

J6 STO EZ-Board

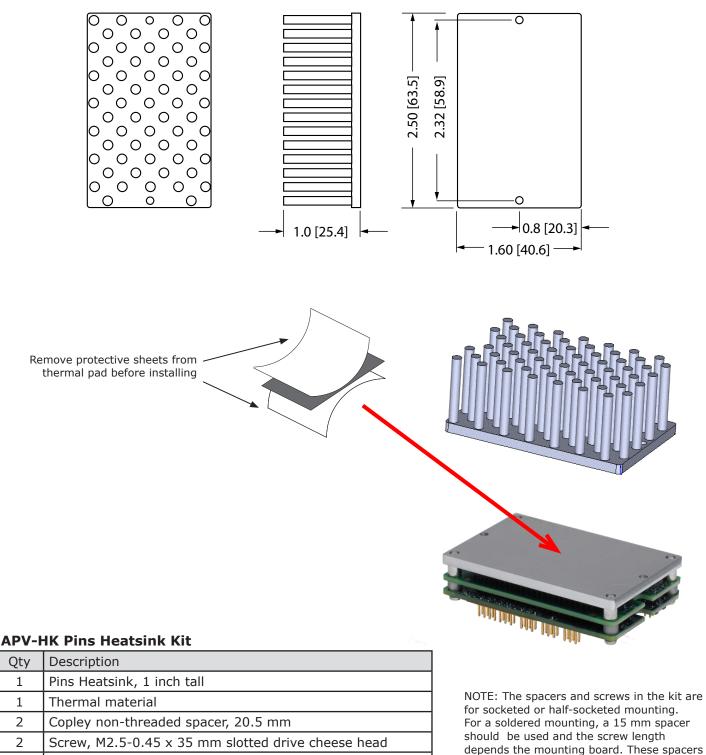

Signal	Pin		Signal	
IN1	15	16	+5V ENC	
SGND	13	14	FGND	
n.c.	11	12	n.c.	
STO-IN2(-)	9	10	STO-IN2(+)	
STO-IN2(-)	7	8	STO-IN2(+) 24V	
n.c.	5	6	n.c.	
STO-IN1(-)	3	4	STO-IN1(+)	
STO-IN1(-)	1	2	STO-IN1(+) 24V	

J6 STO Signals

Signal	Pin		Signal	
IN1	15	16	+5VENC	
SGND	13	14	FGND	
n.c.	11	12	n.c.	
STO2_RTN	9	10	STO2_IN	
STO2_RTN	7	8	STO2_24V_IN	
n.c.	5	6	n.c.	
STO1_RTN	1_RTN 3 4 STO1_IN			
STO1_RTN	1	2	STO1_24V_IN	

The APV-EZ-STO, when inserted into J6 will disable the STO function, allowing normal operation of the APV drive when the STO function is not required. As shown below, the STO inputs are energized in parallel using the encoder +5V from the drive.

The APV-EZ-STO works on the EZ Board and the EZ Development Board.


APV-EZ-STO

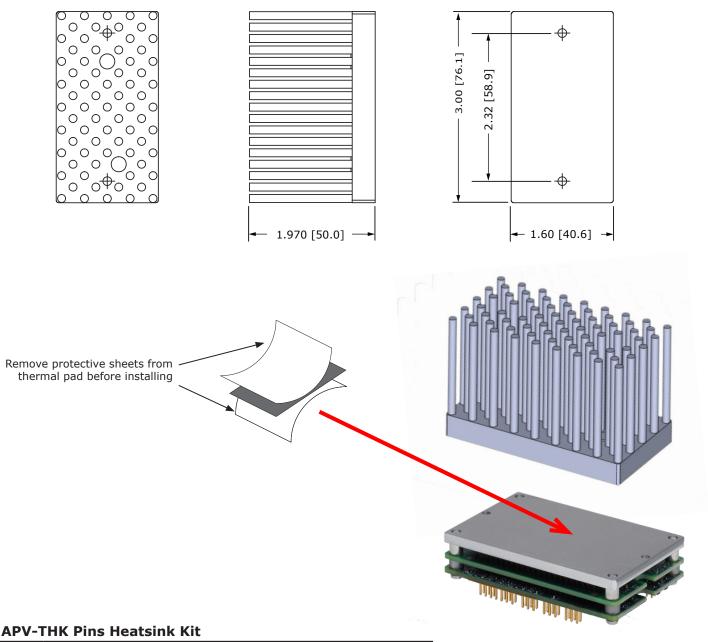
controls Accelnet Plus Micro Module CANopen APV

ORDERING CONFIGURATIONS

APV-HK HEATSINK KIT

The APV-HK kit contains a heatsink, thermal material, and hardware to mount it to the drive and PC board.

2


Nut, M2.5x0.45 DIN Zinc Plated Nylon Insert Lock

and screws are supplied by the user.

ORDERING CONFIGURATIONS

APV-THK HEATSINK KIT

The APV-THK kit contains a heatsink, thermal material, and hardware to mount it to the drive and PC board.

Qty	Description			
1	Tall Pins Heatsink, 1.97 inch tall			
1	Thermal material			
2	Copley non-threaded spacer, 20.5 mm			
2	Screw, M2.5-0.45 x 40 mm slotted drive cheese head			
2	Nut, M2.5x0.45 DIN Zinc Plated Nylon Insert Lock			

NOTE: The spacers and screws in the kit are for socketed or half-socketed mounting. For a soldered mounting, a 15 mm spacer should be used and the screw length depends the mounting board. These spacers and screws are supplied by the user.

THIS PAGE LEFT BLANK INTENTIONALLY

ORDERING GUIDE

MICRO MODULES

APV-090-14	Accelnet Plus Micro Module APV servo drive, 7/14 A, 90 Vdc
APV-090-30	Accelnet Plus Micro Module APV servo drive, 15/30 A, 90 Vdc
APV-090-50 *	Accelnet Plus Micro Module APV servo drive, 25/50 A, 90 Vdc
APV-090-50-C *	Accelnet Plus Micro Module APV servo drive 50/50 A, 90 Vdc
APV-180-10	Accelnet Plus Micro Module APV servo drive, 5/10 A, 180 Vdc
APV-180-20	Accelnet Plus Micro Module APV servo drive, 10/20 A, 180 Vdc

* Not compatible with APV-EZ-090 board. Use APZ-090-50 or APZ-090-50-C if connectorized version is needed.

MICRO MODULES SOLDERED

APZ-090-50	Accelnet Plus Micro Module APV servo drive, 25/50 A, 90 Vdc, soldered to EZ Board			
APZ-090-50-C	Accelnet Plus Micro Module APV servo drive 50/50 A, 90 Vdc, soldered to EZ Development Board with heatsink installed (see page 39)			

ACCESSORIES FOR MICRO MODULES

APV-EZ-090	EZ Board (Pluggable for 90V APV modules, Not compatible with APV-090-50 or APV-090-50-C)			
APV-EZ-180	EZ Board (Pluggable for 180V APV modules)			
APV-EZ-CK	EZ Board Connector Kit (see below)			
APV-HK	Heatsink kit (Pins heatsink, thermal pad, and hardware)			
APV-THK	Heatsink kit (Tall Pins heatsink, thermal pad, and hardware)			
SER-CK	Serial Cable Kit: 9-Pin Dsub receptacle to 6-pin modular adapter, plus modular cable for EZ board			
SER-USB-RJ11	Serial Interface Cable: USB to RJ11			

ORDERING GUIDE: EZ BOARD CONNECTOR KIT WITH SHELLS & CRIMP SOCKETS

CONNECTOR KIT FOR EZ BOARD AND EZ DEVELOPMENT BOARD

	QTY	REF	NAME	DESCRIPTION	MFGR/PART NUMBER
	1]4	Encoder 2	Connector, socket, double row, 2.00 mm, 8 pos	Hirose: DF11-8DS-2C
	1	J5	I/O	Connector, socket, double row, 2.00 mm, 18 pos	Hirose: DF11-18DS-2C
	1	J6	STO	Connector, socket, double row, 2.00 mm, 16 pos	Hirose: DF11-16DS-2C
	1	J8	VLOGIC	Connector, socket, single row, 2.00 mm, 2 pos	Hirose: DF3-2S-2C
	1	J10	Brake	Connector, socket, single row, 2.00 mm, 3 pos	Hirose: DF3-3S-2C
APV-EZ-CK Connector Kit	40	J4,J5,J6	Crimp socket, 24~28 AWG, gold		Hirose: DF11-2428-SCFA
	5	J8,J10	Crimp socket, 24~28 AWG, gold		Hirose: DF3-2428-SCC
	15		White Flying Lead with contacts at both ends, 26 AWG, gold, 12"		Hirose: H3BBG-10112-W6
	2			with socket at both ends, 26 AWG, gold, 12"	Hirose: H3BBG-10112-R6
	3			d with socket at both ends, 26 AWG, gold, 12"	Hirose: H3BBG-10112-B6
	1		Blue Flying Lead with socket at both ends, 26 AWG, gold, 12"		Hirose: H2BBG-10112-L6
	1	J8,J10	Red Flying Lead	with socket at both ends, 26 AWG, gold, 12"	Hirose: H2BBG-10112-R6
	1	Black Flying Lea		d with socket at both ends, 26 AWG, gold, 12"	Hirose: H2BBG-10112-B6
	1	D1 Encoder 1		Connector, high-density DB-26M, 26 pos, male, solder cup	Norcomp: 180-026-103L001
	1	P1	Encoder 1	Metal Backshell, DB-15, RoHS	3M: 3357-9215
	1	J6	APV-EZ-STO	EZ board plug-in to J6 for disabling STO function	·